
 1

Streaming Hierarchical Clustering for Concept Mining
Moshe Looks, Andrew Levine, G. Adam Covington, Ronald P. Loui, John W. Lockwood, Young H. Cho

Reconfigurable Network Group
Washington University in St. Louis

1 Brookings Drive
http://www.arl.wustl.edu/projects/fpx/reconfig.htm

mlooks@cs.wustl.edu

Abstract—We are concerned with the general problem of
concept mining – discovering useful associations,
relationships, and groupings in large collections of data.
Mathematical transformation algorithms have proven
effective at reducing the content of multilingual,
unstructured data into a vector that describes the content.
Such methods are particularly desirable in fields undergoing
information explosions, such as network traffic analysis,
bioinformatics, and the intelligence community. In
response, concept mining methodology is being extended to
improve performance and permit hardware implementation
– traditional methods are not sufficiently scalable. 1 23 4

Hardware-accelerated systems have proven effective at
automatically classifying such content when topics are
known in advance. Our complete system builds on our past
work in this area, presented in the Aerospace 2005 and
2006 conferences, where we described a novel algorithmic
approach for extracting semantic content from unstructured
text document streams.

However, there is an additional need within the intelligence
community to cluster related sets of content without
advance training. To allow this function to happen at high
speed, we have implemented a system that hierarchically
clusters streaming content. The method, streaming
hierarchical partitioning, is designed to be implemented in
hardware and handle extremely high ingestion rates.

As new documents are ingested, they are dynamically
organized into a hierarchy, which has a fixed maximal size.
Once this limit is reached, documents must consequently be
excreted at a rate equaling their ingestion. The choice of
documents to excrete is a point of interest - we present
several autonomous heuristics for doing so intelligently, as
well as a proposal for incorporating user interaction to focus
attention on concepts of interest.

A related desideratum is robust accommodation of concept

1
1 1-4244-0525-4/07/$20.00 ©2007 IEEE.
2 IEEEAC paper #1220, Version 4, Updated December 7, 2006
3 Moshe Looks is also affiliated with the SAIC Integrated Intelligence
Solutions Operation.
4 This research was sponsored by the Air Force Research Laboratory, Air
Force Materiel Command, USAF, under Contract Number MDA972-03-9-
0001. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of AFRL or the U.S.
Government.

drift - gradual change in the distribution and content of the
document stream over time. Accordingly, we present and
analyze experimental results for document streams evolving
over time under several regimes. Current and proposed
methods for concisely and informatively presenting derived
content from streaming hierarchical clustering to the user
for analysis are presented in this content.

To support our claims of eventual hardware implementation
and real-time performance with a high ingestion rate, we
provide a detailed hardware-ready design, with asymptotic
analysis and performance predictions. The system has been
prototyped and tested on a Xeon processor as well as on a
PowerPC embedded within a Xilinx Virtex2 FPGA.

In summary, we describe a system designed to satisfy three
primary goals: (1) real-time concept mining of high-volume
data streams; (2) dynamic organization of concepts into a
relational hierarchy; (3) adaptive reorganization of the
concept hierarchy in response to evolving circumstances
and user feedback.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. HIERARCHICAL PARTITIONING............................ 3
3. EXPERIMENTAL RESULTS 4
4.HARDWARE DESIGN .. 6
5. STREAMING HIERARCHICAL PARTITIONING....... 7
6. STREAMING EXPERIMENTAL RESULTS................ 9
7. CONCLUSIONS AND FUTURE DIRECTIONS.......... 10
REFERENCES... 11
BIOGRAPHY .. 11

1. INTRODUCTION

As part of an ongoing research project, we have developed
a novel algorithmic approach for extracting semantic
content from voluminous data streams [1-3]. The approach
is applicable to multilingual documents and multiple
encodings, which can be automatically identified and
converted into a common structure [4].

The primary motivation for this project is the observation
that the rate of increase in the processing of data in software
has not kept pace with the increasing quantities of data that
must be processed (see [2] for more details). Thus we have

John
Text Box
Streaming Hierarchical Clustering for Concept Mining; by Moshe Looks, Andrew Levine, G. Adam Covington,
Ronald P. Loui, John W. Lockwood, Young H. Cho; IEEE Aerospace Conference; Big Sky, MT, March 3-10, 2007;
Paper 10.0701

 2

developed novel, hardware-accelerated approaches to
detecting known and unknown content, at line speeds [1-3].

Here, we report on an extension of this work, which clusters
documents hierarchically, without any need for training in
advance. The new method represents the first known work
aimed at hardware-accelerated streaming hierarchical
clustering of documents, which can be seen as a subfield of
the nascent discipline of “streaming AI”, “evolutionary
clustering”, or “AI in hardware”.

After describing our current overall approach to streaming
data processing, the paper proceeds as follows:

• In Section 2 we provide a brief background on
techniques for autonomously organizing static
collections of text documents. We then show why
we have chosen an approach based on hierarchical
partitioning, based on lessons from the literature
and integration with the rest of our system.

• In Section 3 we present comparative experimental
results for the hierarchical partitioning approach
described in Section 2, along with other popular
clustering algorithms.

• In Section 4 we show how hierarchical partitioning
may be implemented in hardware.

• In Section 5 we describe the unique challenges of
streaming concept mining, and show how
hierarchical partitioning may be extended to meet
them.

• In Section 6 we give experimental results for
streaming hierarchical partitioning.

• In Section 7 we conclude and describe our plans
for future work, including the implementation of
streaming hierarchical partitioning in hardware.

The AFE system is a High Speed Content classification
system that works in three stages to classify flows of TCP
traffic. A TCP flow is half of a TCP conversation. A
connection from a client to a Mail server with SMTP
(simple mail transfer protocol) is an example of a flow. The
connection from the Mail server back to the client is
considered a separate flow. AFE extracts words then builds
a vector representation and then scores against known
concepts. The scores of the completed flows are passed out
of the system for evaluation.

Stage one of the AFE pipeline extracts words from the flow.
Words are considered a series of “acceptable” characters
having a minimum of 3 characters. All words are truncated
at 16 characters. The characters in ASCII and Windows
Code Page 1256 are examples of “acceptable” characters.

Representing every word as a feature in a vector is not
possible. Therefore, AFE has a dimensionality reduction
mechanism called the Word Mapping Table (WMT). The
WMT hashes extracted words into a 20bit value that is a
memory location. Each memory location has a value stored
in the range of 0 to 4000 referred to as base words. The
vector representing the flow has 4000 dimensions (based on
hardware considerations). Stage one of the AFE system
produces a base word list from the output of the WMT on a
per packet basis.

Figure 1 shows the functioning of the WMT. The WMT is
reconfigurable at runtime and is created from a set of
training documents. As seen in Figure 1, words can be
grouped together, mapping to a single dimension; likewise,
words can be ignored by not mapping to any dimension.

H(“ ”)

H(“dynamite”)

H(“nitroglycerine”)
= 101,203

H(“gelamex”)
= 672,101

H(“Qassam”)

H(“Nassar”)

Input =
Hash of

words that
may appear

in a document

Range = 0 .. 2^20 – 1
{ 0 .. 1,048,575 }

H(explosive)
= 1033

H(rocket)
= 2801

H(“irrelevant”)

0

3999

0

1,048,575

Word Mapping Table

H(“ ”)

H(“dynamite”)

H(“nitroglycerine”)
= 101,203

H(“gelamex”)
= 672,101

H(“Qassam”)

H(“Nassar”)

Input =
Hash of

words that
may appear

in a document

Range = 0 .. 2^20 – 1
{ 0 .. 1,048,575 }

H(explosive)
= 1033

H(rocket)
= 2801

H(“irrelevant”)

0

3999

0

1,048,575

Word Mapping Table

Figure 1 Word Mapping Table for AFE System

The base word list from stage one used for counting in stage
two. Each dimension is represented by 4bits. Counting for a
dimension saturates at 15. When the flow ends the count
vector representing the flow is passed on to stage three.

Stage three of the AFE system is seen in Figure 2. A vector
representing a flow is scored against vectors representing
known concepts. The concept vectors are called the Score
Table (ST) and are reconfigurable at run time like the
WMT. The ST is derived from a set of documents. The
output of the AFE system is a set of scores and the count
array of the flow.

Evaluation of the scores determines the classification of the
flow against the known concepts. However, simply
classifying the flow as the concept with greatest score is not
adequate. A forced classification of all flows will be
undesirable in most applications. A threshold provides a
confidence level to the classification of flows. Any
document that is not classified is considered unknown to the
system. Clustering these unclassified flows is the focus of
the Streaming Clustering work in this paper.

 3

Incoming
document vector

Parallel computation of
distance between document vector

with each known concept vector

…

Σ (Documenti * Concepti,k)
(dot product)

Σ Σ Σ Σ Σ Σ ΣΣ Σ
i=3999

i=0

Outgoing
score array
for k=0..29

concept vectors

Incoming
document vector

Parallel computation of
distance between document vector

with each known concept vector

…

Σ (Documenti * Concepti,k)
(dot product)

Σ Σ Σ Σ Σ Σ ΣΣ Σ
i=3999

i=0

Outgoing
score array
for k=0..29

concept vectors

Figure 2 Scoring Against Known Concepts

2. HIERARCHICAL PARTITIONING

The notion that natural categories tend to be organized
hierarchically as a general principle dates back at least to
Aristotle, and has been refined by Simon [5]. Considering
that libraries, governments, Internet newsgroups and
taxonomies, and the human neocortex all organize and
process information hierarchically, it is certainly a natural
methodology for organizing unknown content. A logical
assumption for document clustering is that like documents
will group together. Groupings with large number of items
are more general. As the number of items starts to dwindle,
the topic of a grouping becomes more specific. For
example, the topic of “cars” is very general, while
“Cadillac” is more specific and would be part of the general
topic of “cars.”

Two standard approaches can be taken to the problem
organizing a collection of documents represented as fixed-
length vectors of high dimensionality hierarchically –
agglomerative (bottom-up), and divisive (top-down). They
can both be simply described as follows:

Agglomerative-Cluster:
Assign each document to a unique cluster
While more than one cluster exists

Merge the two closest clusters
Return the single remaining cluster as the root

Divisive-Cluster:
If the collection contains a single document

Return it in a single cluster
Else
 Divide the collection into two parts
 Call divisive-cluster on each part

The final result for both procedures is a binary tree
containing a single document in every leaf, where close
leaves (measured by tree-traversal distance) are related.

Which approach is superior? Both methods have their
general advantages and drawbacks, but for the specific
problem of document clustering where documents are
represented via a bag-of-words approach, empirical studies
have shown that the top-down divisive approach produces
consistently superior results [6, 7]. The generally accepted
explanation for these results is that local neighborhood
information (which pairs of documents contain most similar
word distributions) is often misleading, deceiving
agglomerative clustering into making bad merge decisions
early on. Divisive clustering can often avoid these mistakes
by first considering the global statistics of collections of
documents, which are more robust. See [6] for more details.

Thus, a divisive hierarchical clustering approach is expected
to give us the best results; the remaining decision that must
be made is how to divide a collection of documents. To
answer this, we need to consider how best to measure
similarity between groups of documents. We can look to the
literature for guidance: of the many distance metrics that
have been proposed for use in clustering, normalized
similarity measures, where the similarity measure for a
given document is divided by the magnitude of the
document, generally provide more robust performance. This
is in part because documents of varying lengths will often
have radically different magnitudes which, without
normalization, can disrupt the clustering results [7].

By further focusing on the particular representational
scheme we have chosen for documents, outlined in the
introduction, and the particular distribution of documents
we expect to encounter, we will obtain a final specification
for our clustering methodology. In our system [1], multiple
words are merged into a single bucket, with relatively low
dynamic range (4 bits). The precise value on a dimension
may not provide us with much meaning. Thus, we will
consider each dimension to be binary (either some word(s)
corresponding to the bucket are present, or not). Since
document vectors will generally be sparse, we can regard a
non-zero value in some dimension as being a hit on the
concept the dimension denotes.

Furthermore, large amounts of chaff (useless documents)
are expected to be mixed with the target documents,
indicating that we will typically need to create one or more
large loose “junk” subtrees – a division that creates one
extremely good subtree at the expense of a relatively poor
one may be just what we need.

Given a set of document-vectors V, we can compute the
centroid vector,

∑
∈

=
Vv

v
V

Vc 1)(, (1)

via vector addition (each dimension is summed separately).

 4

The centroid gives an indication of the overall makeup of a
cluster, and is used in many clustering algorithms.
Assuming that our set of documents, V, represents some
cohesive grouping (e.g., a collection of postings from a
single internet newsgroup), its centroid provides us with an
indication of what concepts the “average” document refers
to – the value in some dimension will be between zero and
one, and denote the probability of a random document from
the collection scoring a hit in that dimension.

It is natural to consider measuring the affinity of a
document to a given collection by comparing its distribution
of hits to our expectations – normalized by document-vector
magnitude, as documents with higher magnitudes have
more opportunities for hits. We thus obtain, given a set of
document-vectors V, and some document-vector, x :

x
xVcxVaffinity •=)(),(, (2)

where • is the dot-product operation. Extending this, we
can measure the cluster-quality of a set of document-vectors
V by summing the affinities of all of the document-vector in
V, to V:

∑
∈

=
Vv

vVaffinityVscore),()(. (3)

Furthermore, the quality of a division of some set of
document-vectors V into sub-sets V1 and V2 may be
measured as score(V1) + score(V2). Thus, hierarchical
partitioning, our approach to document clustering, may be
described as divisive clustering where clusters are divided
in an attempt to maximize the quality of the division, as
defined above.

The heuristic approach that we have chosen to take to
attempt this is quite simple. A set of document-vectors is
randomly partitioned (a fair coin is flipped for each
document to assign it to either cluster one or cluster two).
Documents are iteratively transferred between the two
clusters, one at a time, as long as doing so strictly increases
the division quality. Requiring a strict increase in division
quality ensures that the partitioning procedure is guaranteed
to terminate.

In the following section, we will compare hierarchical
partitioning to flat and hierarchical variants of the popular
k-means clustering algorithm [8, 9], and to a baseline
hierarchical clustering algorithm (bisection k-means [6]), of
about 13,000 messages from the well-known “twenty
newsgroups” (CMU-20) dataset [10], mixed with about
11,000 “chaff” documents, from the newsgroup talk.origins.
These documents consist largely of off-topic content, flame
messages, non-cohesive threads.

The AFE document vector representation is used in the
experiment. A vector has 4000 dimensions with 4bit
counters for each dimension. As described in Section 1, the
dimensions of a vector represent a single word or a group of
words. The specific mapping of words to dimensions is
done by a WMT training program. A set of the data was set
aside to train the WMT and ST for the experiment.

3. EXPERIMENTAL RESULTS

The k-means clustering algorithm separates input data into
K groups. The number of groups, or K, is set prior to
running the clustering algorithm. Each document in the data
is assigned to a cluster. These assignments are used to
calculate the cluster centroid or center. The cluster centroids
are then utilized to determine the distance between each
centroid and a data element. The algorithm seeks to
minimize the inner cluster distance (i.e. form tight groups of
similar data) and minimize the inter cluster distance (i.e. the
groupings are non-overlapping).

The distance calculation can be performed in any number of
ways. Three common methods of distance calculation
include the Minkowski, Manhattan, and Euclidean Distance
metrics. The cosine theta distance has also been used with
k-means in order to cluster high dimensional data [9].

The algorithm is a cyclical algorithm that performs in the
following manner:

1. Initially assign document in the data to K groups

2. Calculate the cluster centroids based on
assignments

3. For each document in the data

a. Recalculate distances from document to all
centroids and find closest centroid

b. Change document assignment to closest centroid
and update the centroids that the document used to
reside and currently resides

4. Repeat step 3 until either no changes are made to
document assignments or the epoch limit is reached.

Bisection k-means is a variant of the k-means algorithm. It
starts with a single cluster and continually selects a cluster
to split into 2 sub-clusters until the requested number of
clusters is achieved.

1. Pick a cluster to split.

2. From the selected cluster, use k-means to
cluster the elements into 2 sub-clusters.

 5

Figure 3 – Confusion matrices for k-means (top), bisectional k-means (middle), and hierarchical partitioning (bottom), on

the dataset of 23,845 newsgroup postings described in the text.

 6

3. Repeat steps 1 and 2 until the desired number
of clusters is found.

The selection of the cluster to bisect can be done in a
number of ways. Steinbach et al. [6] found that choosing the
cluster with the most elements was sufficient to find good
clustering; we use the same heuristic here.

In order to objectively compare the results of a hierarchical
clustering algorithm to a flat clustering, we need a means of
automatically flattening a full binary cluster tree to a set of k
clusters (given some particular k). A simple heuristic for
doing so is to choose the (non-overlapping) subtrees that
make the highest quality clusters, as defined in the previous
section. So for k=2, we will choose the left and right
subtrees of the root. For k=3 we will take the lowest scoring
of our current clusters (that is not already a leaf) and expand
it into two clusters by replacing it with its two children
(recall that divisive hierarchical clustering always produces
a binary tree). For bisection k-means, the approach of
Steinbach et al. [6] is followed; we stop tree creation after k
leaves have been formed and take them as our clusters.

Based on capabilities of the current hardware, we have
chosen k=60 clusters as a realistic figure to use for the
comparison. In Figure 3 we see the algorithm’s respective
confusion matrices. The ground-truth newsgroups
(horizontal axis) are ordered so that the far right column of
the confusion matrix is the chaff, and the ordering of the
remaining newsgroups .is arbitrary. The clusters (vertical
axis) are ordered based by their most frequent newsgroup,
with color showing purity (blue is lowest, red highest).

A perfect clustering would hence be denoted by a crisp
diagonal red line. As can be seen from the figure, k-means
is clearly inferior to the two hierarchical approaches,
placing the majority of the documents into two large
clusters (the two horizontal red lines near the bottom of the
plot). Bisection k-means and hierarchical partitioning
produce comparable results; however half (30) of the
clusters created by bisection k-means are dominated by
chaff, whereas hierarchical partitioning creates only ten
such “junk” clusters. This is preferable from a human
analyst’s point of view, as it allows uninteresting document
sets to be identified and discarded more quickly.

4. HARDWARE DESIGN

Hierarchical partitioning was designed to be easily
implemented on FPGAs without floating-point numbers.
FPGAs can be used to implement floating point
calculations, however the amount of resources needed to
implement floating point arithmetic can reduce the amount
of parallelism available. By utilizing integer arithmetic,
smaller arithmetic units can be replicated to increase the
parallelism of an algorithm. Algorithms can be mapped

from floating point arithmetic to integer, however care has
to be taken in the mapping. For instance, mapping a cosine
theta distance that is a floating point value between [0,1] to
an integer range of [0, 16] will cause algorithmic instability.
The instability appears due to the loss of precision in the
distance metric. This loss of precision in a k-means
implementation could cause groups of data elements to
move cyclically between clusters, causing the algorithm not
to terminate without a set epoch limit. For hierarchical
partitioning, we can avoid loss of precision by multiplying
internal results by the vector dimensionality (4000) and
using integer division. 32-bit integers appear to be sufficient
for computations involving clusters with over half a million
documents when using this method. The feasibility of this
approach is another advantage of using only a single bit to
represent each dimension (otherwise we would run into
issues of overflow).

Careful examination of the algorithm reveals opportunities
to accelerate a naïve implementation. We apply some
classical optimization techniques to our original code to
increase its performance up to eightfold. It is obvious that
similar implementation techniques can be used with digital
signal processing extensions such as SSE3, 3D Now, and
AltiVec to further increase the performance. We have also
started to explore massively parallel architecture using the
same algorithm structure that can be translated into
hardware in reconfigurable devices.

Optimizations we implemented are as follows:
1. Pack 4000 dimension array of 8-bit byte into bitmap
2. Implement 32-dimension vector sum using 32-bit

registers
3. Calculate multiple dot products using 32-bit registers

and instructions

For the sake of simplicity, our initial version of the program
used 32-bits to represent a Boolean entry in our 4000
dimension vector. Packing such large Boolean array into a
bitmap (1-bit for each dimension) reduces the requirements
for storage and memory bandwidth by 1/32th of the original
size. In many streaming applications, memory bandwidth is
an important resource that is often a bottleneck of the
system performance. Therefore, such reduction in storage
and bandwidth is necessary. Along with the changes in data
structure, its content had to be converted to fit into the rest
of the implementation. The data conversion adds processing
overhead to decrease the overall performance. Fortunately,
the vectors are usually sparsely populated in our application
domain. Therefore, we modify the code to check for non-
zero value in the bitmap before processing the data. Since
each integer register contains 32 dimensions, the
performance is significantly increased for sparse document
vector set. The experimental results show average speedup
to 2 with above optimizations.

 7

1 0 1 0 1 1

Bitmapped Vector A Bitmapped Vector B+... ... 0 11 1

1 0 1 ... 1 0

0 0 0 ... 0 1

0 0 1 ... 0 0

0 1 0 ... 0 11 0 1 ... 10 0 0 1 ... 00+ +

1 2 ... 1 1 ... 2
D31 D29 D1… D30 D0…

Mask

Left
Shift

UInt32
Add

Figure 4: 32-dimension vector sum using Integer

operations. The vector sum is accomplished using 6
instructions instead of 32x2=64 instructions.

Vector summation task requires that each dimension of the
vectors to be added together. Given N number of X-
dimension vectors, the total number of operation required
for the sum is N*X-1. However, given packed bitmap
representation of the vector, this operation can be
accelerated. Figure 4 shows how the bitmap vectors can be
reorganized to apply 32-bit add instructions to sum multiple
dimensions in parallel. This algorithm can be extended to
apply for adding several vectors. As the number of vectors
grows, the number of dimensions that can be processed in
parallel is reduced. Given sparse vectors, this optimization
yields significant performance increase. For our test data
set, this optimization increased the performance to yet
another twofold.

Dot product task in our algorithm requires multiplication of
1-bit value with a summation result from above paragraph.
Due to integer to bitmap conversion, dot product is slower
than our initial implementation. Therefore, we found that it
is necessary to accelerate this task. It is obvious that 1-bit
value can be treated as a conditional Boolean for
determining whether to add the value to the result. For our
dataset, it is sufficient to use 16-bits to retain dot product
results. Therefore, our summation algorithm is efficiently
implemented to pack two 16-bit summation results into a
32-bit register. Then, we created a table for 4 different 32-
bit bitmap masks (0x00000000, 0x0000FFFF, 0xFFFF0000,
0xFFFFFFFF) that corresponds to 2-bit vectors. For every
two bits of the bitmap, the corresponding mask is logically
ANDed with the summation results. The masked value is
added to a register. This process continues until all the bits
are processed. Then most significant 16-bit of the register is
added to the lower 16-bits to produce the final dot product.
This process gave additional twofold speedup over previous
implementation.

Above optimizations resulted in overall performance
speedup of eightfold on our experimental dataset. Since
these optimizations are scalable, an implementation using
64-bit instruction set will yield yet another twofold in
speedup. Furthermore, native signal processing extensions

such as SSE3 and AltiVec not only have wider registers but
they offer special instructions that further reduce number of
instructions. We are currently using reconfigurable devices
such as Field Programmable Gate Arrays (FPGA) to exploit
the instructional level parallelism. FPGA implementation in
[11] shows potential performance speedup of 45 times over
software implementation.

5. STREAMING HIERARCHICAL PARTITIONING

In this section we will describe how the hierarchical
partitioning clustering approach presented in the previous
three sections may be adapted to cluster an evolving
document stream. That is, we assume that the collection of
documents to be clustered is effectively infinite, and that
documents are presented to us sequentially, one per time-
step, to be dynamically integrated into our current concept
hierarchy. General bounds and limitations on what can and
cannot be computed in a data stream model may be found in
[12]. An adaptation of k-medians (a variant of k-means) to
operate on data streams is proposed in [13].

We assume that there exists a maximal number of
documents we can store in working memory for fast access,
m, which is finite, and will saturate quickly. We can assume
that as each new document that is ingested requires a
corresponding document to be excreted – several strategies
for doing so will be discussed below.

Similarly, processing capacity is also assumed to be quite
limited, on an amortized per-document basis. That is, we
can carry out expensive processes such as hierarchical
partitioning clustering, but only sporadically. In particular,
we will require per-document processing costs to be sub-
linear, e.g., O(log(m) • log(d)), where m is the number of
documents in working memory, and d is the data
dimensionality (e.g., 4000). We have described above how,
via hardware acceleration, factors of d may be reduced to
log(d), via parallelization. Below, we will describe how
documents may be hierarchically clustered in amortized
time (per document) which is logarithmic in the number of
documents in the concept hierarchy.

Our approach is as follows: assume that we have sufficient
computational resources to carry out hierarchical
partitioning (or some other high-quality hierarchical
document clustering algorithm) every t time-steps, for some
large t. Then, every t time-steps, we will recluster all
documents in memory according to this method. In order to
maintain a reasonable quality anytime clustering, two
questions must be answered:

• How to quickly choose where to add new
documents added to the concept hierarchy?

 8

• How to quickly choose which documents to
remove from the concept hierarchy?

To answer the first, we note that amortized O(log(m))
processing time allows use to traverse the concept hierarchy
a constant number of times (since its depth will grow
logarithmically). Documents are thus inserted into a tree as
follows:

Document-Insert(Document D, Tree T):
Let L = find-Similar-Leaf(D)
Replace L with an internal node with children L and D

Find-Similar-Leaf(Document D, Tree T):
If T is a single leaf, return it
Compute similarity of D to

centroids of T’s left and right subtrees
Let S = subtree with highest similarity

flipping a fair coin in case of a tie
Return Find-Similar-Leaf(D,S)

This kind of simple, greedy-descent matching is known as
tree-structured vector quantization [14]. It returns a single
leaf (representing an existing document in the tree), which
is hopefully most similar to the new document.

To compute the similarity between a document vector and a
centroid, the cosine-theta measure is used:

yx
yxyxsimilarity •=),(.

This score is feasible for implementation in hardware, and
robust when applied to document-vectors, as it is
normalized by vector magnitude (see [7] for more details).

In order to adequately answer the second question of how to
choose documents for removal form the concept hierarchy,
we must consider concept drift - gradual change in the
distribution and content of the document stream over time.
Figure 5 outlines three possible regimes of concept drift:

1. Completely uniform distribution of concepts over
time.

2. Abrupt shift in concepts with no continuity.

3. Gradual drift in the distribution and semantics of
concepts.

Assuming that 3 is the correct model to use, we can
consider two heuristic conditions for removing a document
from memory:

1. Another very similar document is contained in
memory.

Figure 5 – Three possible regimes of concept drift: completely
uniform distribution of concepts over time (top); abrupt shift in
concepts with no continuity (middle}; and gradual drift in the

distribution and semantics of concepts (bottom)

 9

2. No similar documents have been seen for quite
some time.

The tradeoff between these two strategies can be
implemented probabilistically: we can compute the
(normalized) similarity of each document we insert to the
result returned by Find-Similar-Leaf, giving a value p
between zero and one. We will now, with probability p,
remove said document (i.e., if the two documents are
identical we will always remove it). Otherwise, we will
select according to strategy 2. This can be implemented by
“touching” documents whenever they are returned by Find-
Similar-Leaf – if a document has not been touched in a long
time, it is a good candidate for removal. For example, we
can use a “least recently used” (LRU) approximation, such
as pseudo-LRU [15], which is easily implemented in
hardware.

An additional approach we are considering for deciding
which documents to remove from memory, and more
generally, how to direct computational effort, is to solicit
user feedback.

6. STREAMING EXPERIMENTAL RESULTS

In this section we describe experimental results with the
streaming hierarchical partitioning algorithm introduced in
the previous section. Results are presented on newsgroup
data, streamed according to a regime designed to simulate
concept drift - documents are randomly shuffled, but to
begin, only documents from half of the newsgroups are
presented. At uniform intervals, a newsgroup is gradually

introduced into the distribution (and hence the old
newsgroup density gradually reduced). Chaff appears
uniformly throughout the entire datastream. The ground-
truth data for the regime is visualized in Figure 6.

In order to run streaming hierarchical partitioning
clustering, we need to set two parameters – the maximal
number of documents we are capable of storing in working
memory for fast access, and how often the set of documents
stored in working memory will be reclustered. In actual
deployment of course, we will want to store as many
documents as possible in fast memory, and recluster as
often as possible, given hardware constraints and the
bandwidth of the datastream. Given that our dataset
contains about 23,000 documents (see above), setting both
of these to 1000 (i.e., storing 1000 documents in working
memory, and reclustering them every time 1000 documents
have been processed the system) should prove illustrative.

To analyze the quality of hierarchical streaming clustering,
there are two basic factors we consider:

Figure 7. Purity (top) and discovery (bottom) for naïve
(base) and non-naïve (enhanced) streaming hierarchical

clustering.

Figure 6. Concept drift as simulated in the second
streaming experiment described in the text. Each vertical

slice is the concept distribution over 200 consecutive
documents. Each color is a distinct newsgroup

(chaff not shown).

 10

1. Concept quality – as in the non-streaming case,

how meaningful are the concepts discovered by the
algorithm?

2. Concept discovery – as concept drift occurs , does
the algorithm effectively identify new concepts?

In a controlled experiment, where we know the ground-truth
labeling of the documents, concept quality can be measured
by considering how many non-chaff documents are
assigned to clusters that are nearly “pure” (at least 90% of
the documents originating in a single newsgroup).
Furthermore, we only consider clusters with more than 10
documents in computing this measure, henceforth referred
to as a purity score.

Similarly, concept discovery over time can be measured by
considering, at any given time, how many pure clusters
have been created corresponding to unique non-chaff labels,
up until this time. The measure is hence cumulative, and
will henceforth be referred to as a discovery score.

In order to understand how effective the document insertion
and removal heuristics described in the previous section are
at augmenting hierarchical partitioning for streaming
clustering, we need a baseline. In this procedure, full
hierarchical partitioning clustering will still be carried out at
the same regular intervals. However, when new documents
are ingested, documents will be chosen entirely at random
to be removed. This methodology will henceforth be
referred to as naïve streaming clustering.

Comparative purity and discovery scores for both
procedures are shown in Figure 7. for In order to provide a
fair comparison between naïve and non-naïve streaming
clustering, scores are only computed immediately after
batch clustering has been completed. That is, naïve
streaming clustering is not penalized for having poor results
in between batch clustering.

As can be seen, both methods are equally effective in terms
of purity scores – as expected, since this score is essentially
determined by the batch clustering, which is identical.
However, non-naïve streaming hierarchical partitioning
clustering consistently dominates the naïve variant for
concept discovery. This recommends it for applications
where concepts are expected to evolve and new concepts
are expected to emerge over time, given the goal of concept
mining.

7. CONCLUSIONS AND FUTURE DIRECTIONS

As an extension to our prior Aerospace conference papers
[1,2, 3, 16] that describe a system for extracting semantic
content from unstructured text document streams, we have
developed a clustering system. The implemented system,
streaming hierarchical partitioning, hierarchically clusters

streaming content. This algorithm has been designed to be
implemented in hardware and handle extremely high
ingestion rates.

We have provided a detailed hardware-ready design, with
asymptotic analysis and performance predictions. The
performance predictions include the quality of clustering,
and concept discovery. The streaming hierarchical
clustering algorithm was able to improve the ability to
discover concepts. The system has been prototyped and
tested on a Xeon processor as well as on a PowerPC
embedded within a Xilinx Virtex2 FPGA.

The design for hardware implementation of batch
hierarchical partitioning described in Section 4 can serve as
the basis for our hardware implementation of streaming
hierarchical partition. To implement additional streaming
functionality, some of the same circuitry can be reused – in
particular the computation of similarity of document
insertion. The remaining operations are quite simple and
present no special challenges for conversion to circuitry.

In the future, we plan to additionally move towards a
system that:

• Integrates clustering into our classification system [1, 2,
16],

• Continually searches for new and emerging concepts,

• Allows the resolution of concepts to fade over time to
allow for streaming with infinite-length data sets.

 11

REFERENCES

 [1] J. W. Lockwood, S. G. Eick, J. Mauger, J. Byrnes, R. P.
Loui, A. Levine, D. J. Weishar, and A. Ratner, “Hardware
Accelerated Algorithms for Semantic Processing of
Document Streams”, 2006 IEEE Aerospace Conference,
March 4-11, 2006.

[2] J. W. Lockwood, S. G. Eick, D. J. Weishar, R. P. Loui, J.
Moscola, C. Kastner, A. Levine, and M. Attig,
“Transformation Algorithms for Data Streams, 2005 IEEE
Aerospace Conference”, March 5-12, 2005.

[3] J. Byrnes and R. Rohwer, “An Architecture for Streaming
Coclustering in High Speed Hardware”, IEEE Aerospace
Conference, March 4-11, 2006.

[4] C. Kastner, G. A. Covington, A. Levine, and J.
Lockwood, “HAIL: A Hardware-Accelerated Algorithm
for Language Identification”, 15th Annual Conference on
Field Programmable Logic and Applications (FPL),
August 24-26, 2005.

[5] H. Simon, The Sciences of the Artificial, Cambridge: MIT
Press, 1969.

[6] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison
of Document Clustering Techniques”, Proceedings of the
6th KDD Workshop on Text Mining, August 20-23,
2000.

[7] A. Strehl, J. Ghosh, and R Mooney, “Impact of Similarity
Measures on Web-Page Clustering”, AAAI Workshop on
AI for Web Search, July 30, 2000.

[8] J. B. MacQueen, “Some Methods for Classification and
Analysis of Multivariate Observations”, 5th Symposium
on Mathematics, Statistics and Probability, 1967.

[9] G. A. Covington, C. Comstock, A. Levine, J. Lockwood,
and Y. Cho, “High Speed Document Clustering in
Reconfigurable Hardware” 16th Annual Conference on
Field Programmable Logic and Applications, August 28-
30, 2006.

[10] Twenty Newsgroups Website
http://people.csail.mit.edu/jrennie/20Newsgroups

[11] S. Padmanabhan, M. Looks, D. Legorreta, Y. Cho, and J.
Lockwood, “A Hardware Implementation of Hierarchical
Clustering”, Poster Summary at IEEE Symposium on
Field-Programmable Custom Computing Machines, April
2006.

[12] M. R. Henzinger, P. Raghavan, and S. Rajagopalan,
“Computing on Data Streams”, External Memory
Algorithms, Boston: American Mathematical Society,
1999.

[13] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan,
“Clustering Data Streams”, 41st Annual Symposium on
Foundations of Computer Science, 2000.

[14] A. Buzo, A. Gray Jr., R. Gray, and J. Markel, “Speech
Coding Based Upon Vector Quantization”, IEEE
Transactions on ASSP 28, 562-574, 1980.

[15] A. Seznec and F. Bodin, “Skewed-Associative Caches”,
Proceedings of PARLE, 1993

[16] J. Byrnes and R. Rohwer, “Text Modeling for Real-Time
Document Categorization”, IEEE Aerospace Conference,
March, 2005.

BIOGRAPHY

Moshe Looks, Andrew Levine, and G. Adam Covington
are graduate students at Washington University
in St. Louis.

Ronald P. Loui is an Associate Professor in Computer
Science and Engineering. He is the author of over seventy
articles in leading technical journals over the past two
decades including AI Journal, Cognitive Science,
Computational Intelligence, Journal of Philosophy, Journal
of Symbolic Logic, MIT Encyclopedia on Cognitive
Science, AI and Law, Theory and Decision, CACM, and
ACM Computing Surveys. He was a Stanford Sloan Fellow
and received his undergraduate degree at Harvard with high
honors in Applied Mathematics: Decision and Control,
1982. He received a joint Computer Science and
Philosophy doctoral degree from the University of
Rochester, after a CS MS, in 1987.

John W. Lockwood designs
and implements networking
systems in reconfigurable
hardware. He leads the
Reconfigurable Network
Group (RNG) at Washington
University. The RNG research
group developed the Field
programmable Port Extender
(FPX) to enable rapid
prototype of extensible
network modules in Field
Programmable Gate Array
(FPGA) technology. He is an Associate professor in the
Department of Computer Science and Engineering at
Washington University in Saint Louis. He has published

 12

over 75 full-length papers in journals and major technical
conferences that describe technologies for providing
extensible network services in wireless LANs and in high-
speed networks. Professor Lockwood has served as the
principal investigator on grants from the National Science
Foundation, Xilinx, Altera, Nortel Networks, Rockwell
Collins, and Boeing. He has worked in industry for AT&T
Bell Laboratories, IBM, Science Applications International
Corporation (SAIC), and the National Center for
Supercomputing Applications (NCSA). He served as a co-
founder of Global Velocity, a networking startup company
focused on high-speed data security. Dr. Lockwood earned
his MS, BS, and PhD degrees from the Department of
Electrical and Computer Engineering at the University of
Illinois. He is a member of IEEE, ACM, Tau Beta Pi, and
Eta Kappa Nu.

Young Cho is a Visiting
Assistant Professor at
Computer Science and
Engineering Department of
Washington University in St.
Louis. He has earned his BA
in Computer Science from UC
Berkeley, MSE in Computer
Engineering at UT Austin, and
PHD in Electrical Engineering
at UCLA. He has designed
and implemented a number of
high performance research and development projects as
well as commercial products during his career. His areas of
expertise include network security, computer networks, high
performance computer architecture, and reconfigurable
computers. He is a member of IEEE and ACM.

