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Abstract—We are concerned with the general problem of 
concept mining – discovering useful associations, 
relationships, and groupings in large collections of data. 
Mathematical transformation algorithms have proven 
effective at reducing the content of multilingual, 
unstructured data into a vector that describes the content. 
Such methods are particularly desirable in fields undergoing 
information explosions, such as network traffic analysis, 
bioinformatics, and the intelligence community. In 
response, concept mining methodology is being extended to 
improve performance and permit hardware implementation 
– traditional methods are not sufficiently scalable. 1 23 4 
 
Hardware-accelerated systems have proven effective at 
automatically classifying such content when topics are 
known in advance. Our complete system builds on our past 
work in this area, presented in the Aerospace 2005 and 
2006 conferences, where we described a novel algorithmic 
approach for extracting semantic content from unstructured 
text document streams. 
 
However, there is an additional need within the intelligence 
community to cluster related sets of content without 
advance training. To allow this function to happen at high 
speed, we have implemented a system that hierarchically 
clusters streaming content. The method, streaming 
hierarchical partitioning, is designed to be implemented in 
hardware and handle extremely high ingestion rates. 
 
As new documents are ingested, they are dynamically 
organized into a hierarchy, which has a fixed maximal size. 
Once this limit is reached, documents must consequently be 
excreted at a rate equaling their ingestion. The choice of 
documents to excrete is a point of interest - we present 
several autonomous heuristics for doing so intelligently, as 
well as a proposal for incorporating user interaction to focus 
attention on concepts of interest.  
 
A related desideratum is robust accommodation of concept 
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drift - gradual change in the distribution and content of the 
document stream over time. Accordingly, we present and 
analyze experimental results for document streams evolving 
over time under several regimes. Current and proposed 
methods for concisely and informatively presenting derived 
content from streaming hierarchical clustering to the user 
for analysis are presented in this content. 
 
To support our claims of eventual hardware implementation 
and real-time performance with a high ingestion rate, we 
provide a detailed hardware-ready design, with asymptotic 
analysis and performance predictions. The system has been 
prototyped and tested on a Xeon processor as well as on a 
PowerPC embedded within a Xilinx Virtex2 FPGA. 
 
In summary, we describe a system designed to satisfy three 
primary goals: (1) real-time concept mining of high-volume 
data streams; (2) dynamic organization of concepts into a 
relational hierarchy; (3) adaptive reorganization of the 
concept hierarchy in response to evolving circumstances 
and user feedback. 
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1. INTRODUCTION 

As part of an ongoing research project, we have developed 
a novel algorithmic approach for extracting semantic 
content from voluminous data streams [1-3]. The approach 
is applicable to multilingual documents and multiple 
encodings, which can be automatically identified and 
converted into a common structure [4].  

The primary motivation for this project is the observation 
that the rate of increase in the processing of data in software 
has not kept pace with the increasing quantities of data that 
must be processed (see [2] for more details). Thus we have 
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developed novel, hardware-accelerated approaches to 
detecting known and unknown content, at line speeds [1-3].  

Here, we report on an extension of this work, which clusters 
documents hierarchically, without any need for training in 
advance. The new method represents the first known work 
aimed at hardware-accelerated streaming hierarchical 
clustering of documents, which can be seen as a subfield of 
the nascent discipline of “streaming AI”, “evolutionary 
clustering”, or “AI in hardware”. 

After describing our current overall approach to streaming 
data processing, the paper proceeds as follows: 

• In Section 2 we provide a brief background on 
techniques for autonomously organizing static 
collections of text documents. We then show why 
we have chosen an approach based on hierarchical 
partitioning, based on lessons from the literature 
and integration with the rest of our system. 

• In Section 3 we present comparative experimental 
results for the hierarchical partitioning approach 
described in Section 2, along with other popular 
clustering algorithms. 

• In Section 4 we show how hierarchical partitioning 
may be implemented in hardware. 

• In Section 5 we describe the unique challenges of 
streaming concept mining, and show how 
hierarchical partitioning may be extended to meet 
them. 

• In Section 6 we give experimental results for 
streaming hierarchical partitioning. 

• In Section 7 we conclude and describe our plans 
for future work, including the implementation of 
streaming hierarchical partitioning in hardware. 

The AFE system is a High Speed Content classification 
system that works in three stages to classify flows of TCP 
traffic. A TCP flow is half of a TCP conversation. A 
connection from a client to a Mail server with SMTP 
(simple mail transfer protocol) is an example of a flow. The 
connection from the Mail server back to the client is 
considered a separate flow. AFE extracts words then builds 
a vector representation and then scores against known 
concepts. The scores of the completed flows are passed out 
of the system for evaluation. 

Stage one of the AFE pipeline extracts words from the flow. 
Words are considered a series of “acceptable” characters 
having a minimum of 3 characters. All words are truncated 
at 16 characters. The characters in ASCII and Windows 
Code Page 1256 are examples of “acceptable” characters. 

Representing every word as a feature in a vector is not 
possible. Therefore, AFE has a dimensionality reduction 
mechanism called the Word Mapping Table (WMT). The 
WMT hashes extracted words into a 20bit value that is a 
memory location. Each memory location has a value stored 
in the range of 0 to 4000 referred to as base words. The 
vector representing the flow has 4000 dimensions (based on 
hardware considerations). Stage one of the AFE system 
produces a base word list from the output of the WMT on a 
per packet basis.  

Figure 1 shows the functioning of the WMT. The WMT is 
reconfigurable at runtime and is created from a set of 
training documents. As seen in Figure 1, words can be 
grouped together, mapping to a single dimension; likewise, 
words can be ignored by not mapping to any dimension. 
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Figure 1 Word Mapping Table for AFE System 
 

The base word list from stage one used for counting in stage 
two. Each dimension is represented by 4bits. Counting for a 
dimension saturates at 15. When the flow ends the count 
vector representing the flow is passed on to stage three. 

Stage three of the AFE system is seen in Figure 2. A vector 
representing a flow is scored against vectors representing 
known concepts. The concept vectors are called the Score 
Table (ST) and are reconfigurable at run time like the 
WMT. The ST is derived from a set of documents. The 
output of the AFE system is a set of scores and the count 
array of the flow. 

Evaluation of the scores determines the classification of the 
flow against the known concepts. However, simply 
classifying the flow as the concept with greatest score is not 
adequate. A forced classification of all flows will be 
undesirable in most applications. A threshold provides a 
confidence level to the classification of flows. Any 
document that is not classified is considered unknown to the 
system. Clustering these unclassified flows is the focus of 
the Streaming Clustering work in this paper. 
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Figure 2 Scoring Against Known Concepts 
 

2. HIERARCHICAL PARTITIONING 

The notion that natural categories tend to be organized 
hierarchically as a general principle dates back at least to 
Aristotle, and has been refined by Simon [5]. Considering 
that libraries, governments, Internet newsgroups and 
taxonomies, and the human neocortex all organize and 
process information hierarchically, it is certainly a natural 
methodology for organizing unknown content. A logical 
assumption for document clustering is that like documents 
will group together. Groupings with large number of items 
are more general. As the number of items starts to dwindle, 
the topic of a grouping becomes more specific. For 
example, the topic of “cars” is very general, while 
“Cadillac” is more specific and would be part of the general 
topic of “cars.” 

Two standard approaches can be taken to the problem 
organizing a collection of documents represented as fixed-
length vectors of high dimensionality hierarchically – 
agglomerative (bottom-up), and divisive (top-down). They 
can both be simply described as follows: 

Agglomerative-Cluster: 
Assign each document to a unique cluster 
While more than one cluster exists 

Merge the two closest clusters 
Return the single remaining cluster as the root 
 
Divisive-Cluster: 
If the collection contains a single document 

Return it in a single cluster 
Else 
 Divide the collection into two parts 
 Call divisive-cluster on each part 
 
The final result for both procedures is a binary tree 
containing a single document in every leaf, where close 
leaves (measured by tree-traversal distance) are related. 

Which approach is superior? Both methods have their 
general advantages and drawbacks, but for the specific 
problem of document clustering where documents are 
represented via a bag-of-words approach, empirical studies 
have shown that the top-down divisive approach produces 
consistently superior results [6, 7]. The generally accepted 
explanation for these results is that local neighborhood 
information (which pairs of documents contain most similar 
word distributions) is often misleading, deceiving 
agglomerative clustering into making bad merge decisions 
early on. Divisive clustering can often avoid these mistakes 
by first considering the global statistics of collections of 
documents, which are more robust. See [6] for more details. 

Thus, a divisive hierarchical clustering approach is expected 
to give us the best results; the remaining decision that must 
be made is how to divide a collection of documents. To 
answer this, we need to consider how best to measure 
similarity between groups of documents. We can look to the 
literature for guidance: of the many distance metrics that 
have been proposed for use in clustering, normalized 
similarity measures, where the similarity measure for a 
given document is divided by the magnitude of the 
document, generally provide more robust performance. This 
is in part because documents of varying lengths will often 
have radically different magnitudes which, without 
normalization, can disrupt the clustering results [7]. 

By further focusing on the particular representational 
scheme we have chosen for documents, outlined in the 
introduction, and the particular distribution of documents 
we expect to encounter, we will obtain a final specification 
for our clustering methodology. In our system [1], multiple 
words are merged into a single bucket, with relatively low 
dynamic range (4 bits). The precise value on a dimension 
may not provide us with much meaning. Thus, we will 
consider each dimension to be binary (either some word(s) 
corresponding to the bucket are present, or not). Since 
document vectors will generally be sparse, we can regard a 
non-zero value in some dimension as being a hit on the 
concept the dimension denotes. 

Furthermore, large amounts of chaff (useless documents) 
are expected to be mixed with the target documents, 
indicating that we will typically need to create one or more 
large loose “junk” subtrees – a division that creates one 
extremely good subtree at the expense of a relatively poor 
one may be just what we need.  

Given a set of document-vectors V, we can compute the 
centroid vector, 

∑
∈

=
Vv

v
V

Vc 1)( , (1) 

 
via vector addition (each dimension is summed separately). 
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The centroid gives an indication of the overall makeup of a 
cluster, and is used in many clustering algorithms. 
Assuming that our set of documents, V, represents some 
cohesive grouping (e.g., a collection of postings from a 
single internet newsgroup), its centroid provides us with an 
indication of what concepts the “average” document refers 
to – the value in some dimension will be between zero and 
one, and denote the probability of a random document from 
the collection scoring a hit in that dimension. 

It is natural to consider measuring the affinity of a 
document to a given collection by comparing its distribution 
of hits to our expectations – normalized by document-vector 
magnitude, as documents with higher magnitudes have 
more opportunities for hits. We thus obtain, given a set of 
document-vectors V, and some document-vector, x : 

x
xVcxVaffinity •= )(),( , (2) 

where •  is the dot-product operation. Extending this, we 
can measure the cluster-quality of a set of document-vectors 
V by summing the affinities of all of the document-vector in 
V, to V: 

∑
∈

=
Vv

vVaffinityVscore ),()( . (3) 

 
Furthermore, the quality of a division of some set of 
document-vectors V into sub-sets V1 and V2 may be 
measured as score(V1) + score(V2). Thus, hierarchical 
partitioning, our approach to document clustering, may be 
described as divisive clustering where clusters are divided 
in an attempt to maximize the quality of the division, as 
defined above. 

The heuristic approach that we have chosen to take to 
attempt this is quite simple. A set of document-vectors is 
randomly partitioned (a fair coin is flipped for each 
document to assign it to either cluster one or cluster two). 
Documents are iteratively transferred between the two 
clusters, one at a time, as long as doing so strictly increases 
the division quality. Requiring a strict increase in division 
quality ensures that the partitioning procedure is guaranteed 
to terminate. 

In the following section, we will compare hierarchical 
partitioning to flat and hierarchical variants of the popular 
k-means clustering algorithm [8, 9], and to a baseline 
hierarchical clustering algorithm (bisection k-means [6]), of 
about 13,000 messages from the well-known “twenty 
newsgroups” (CMU-20) dataset [10], mixed with about 
11,000 “chaff” documents, from the newsgroup talk.origins. 
These documents consist largely of off-topic content, flame 
messages, non-cohesive threads. 
 

The AFE document vector representation is used in the 
experiment. A vector has 4000 dimensions with 4bit 
counters for each dimension. As described in Section 1, the 
dimensions of a vector represent a single word or a group of 
words. The specific mapping of words to dimensions is 
done by a WMT training program. A set of the data was set 
aside to train the WMT and ST for the experiment. 

3. EXPERIMENTAL RESULTS 

The k-means clustering algorithm separates input data into 
K groups. The number of groups, or K, is set prior to 
running the clustering algorithm. Each document in the data 
is assigned to a cluster. These assignments are used to 
calculate the cluster centroid or center. The cluster centroids 
are then utilized to determine the distance between each 
centroid and a data element. The algorithm seeks to 
minimize the inner cluster distance (i.e. form tight groups of 
similar data) and minimize the inter cluster distance (i.e. the 
groupings are non-overlapping). 

The distance calculation can be performed in any number of 
ways. Three common methods of distance calculation 
include the Minkowski, Manhattan, and Euclidean Distance 
metrics. The cosine theta distance has also been used with 
k-means in order to cluster high dimensional data [9]. 

The algorithm is a cyclical algorithm that performs in the 
following manner: 

1. Initially assign document in the data to K groups 

2. Calculate the cluster centroids based on 
assignments 

3. For each document in the data 

a. Recalculate distances from document to all 
centroids and find closest centroid 

b. Change document assignment to closest centroid 
and update the centroids that the document used to 
reside and currently resides 

4.  Repeat step 3 until either no changes are made to 
document assignments or the epoch limit is reached.  

Bisection k-means is a variant of the k-means algorithm. It 
starts with a single cluster and continually selects a cluster 
to split into 2 sub-clusters until the requested number of 
clusters is achieved. 

1. Pick a cluster to split. 

2. From the selected cluster, use k-means to 
cluster the elements into 2 sub-clusters. 
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Figure 3 – Confusion matrices for k-means (top), bisectional k-means (middle), and hierarchical partitioning (bottom), on 

the dataset of 23,845 newsgroup postings described in the text. 
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3. Repeat steps 1 and 2 until the desired number 
of clusters is found. 

The selection of the cluster to bisect can be done in a 
number of ways. Steinbach et al. [6] found that choosing the 
cluster with the most elements was sufficient to find good 
clustering; we use the same heuristic here. 

In order to objectively compare the results of a hierarchical 
clustering algorithm to a flat clustering, we need a means of 
automatically flattening a full binary cluster tree to a set of k 
clusters (given some particular k). A simple heuristic for 
doing so is to choose the (non-overlapping) subtrees that 
make the highest quality clusters, as defined in the previous 
section. So for k=2, we will choose the left and right 
subtrees of the root. For k=3 we will take the lowest scoring 
of our current clusters (that is not already a leaf) and expand 
it into two clusters by replacing it with its two children 
(recall that divisive hierarchical clustering always produces 
a binary tree). For bisection k-means, the approach of 
Steinbach et al. [6] is followed; we stop tree creation after k 
leaves have been formed and take them as our clusters. 

Based on capabilities of the current hardware, we have 
chosen k=60 clusters as a realistic figure to use for the 
comparison. In Figure 3 we see the algorithm’s respective 
confusion matrices. The ground-truth newsgroups 
(horizontal axis) are ordered so that the far right column of 
the confusion matrix is the chaff, and the ordering of the 
remaining newsgroups .is arbitrary. The clusters (vertical 
axis) are ordered based by their most frequent newsgroup, 
with color showing purity (blue is lowest, red highest). 

A perfect clustering would hence be denoted by a crisp 
diagonal red line. As can be seen from the figure, k-means 
is clearly inferior to the two hierarchical approaches, 
placing the majority of the documents into two large 
clusters (the two horizontal red lines near the bottom of the 
plot). Bisection k-means and hierarchical partitioning 
produce comparable results; however half (30) of the 
clusters created by bisection k-means are dominated by 
chaff, whereas hierarchical partitioning creates only ten 
such “junk” clusters. This is preferable from a human 
analyst’s point of view, as it allows uninteresting document 
sets to be identified and discarded more quickly. 

4. HARDWARE DESIGN 

Hierarchical partitioning was designed to be easily 
implemented on FPGAs without floating-point numbers. 
FPGAs can be used to implement floating point 
calculations, however the amount of resources needed to 
implement floating point arithmetic can reduce the amount 
of parallelism available. By utilizing integer arithmetic, 
smaller arithmetic units can be replicated to increase the 
parallelism of an algorithm. Algorithms can be mapped 

from floating point arithmetic to integer, however care has 
to be taken in the mapping.  For instance, mapping a cosine 
theta distance that is a floating point value between [0,1] to 
an integer range of [0, 16] will cause algorithmic instability. 
The instability appears due to the loss of precision in the 
distance metric.  This loss of precision in a k-means 
implementation could cause groups of data elements to 
move cyclically between clusters, causing the algorithm not 
to terminate without a set epoch limit. For hierarchical 
partitioning, we can avoid loss of precision by multiplying 
internal results by the vector dimensionality (4000) and 
using integer division. 32-bit integers appear to be sufficient 
for computations involving clusters with over half a million 
documents when using this method. The feasibility of this 
approach is another advantage of using only a single bit to 
represent each dimension (otherwise we would run into 
issues of overflow). 

Careful examination of the algorithm reveals opportunities 
to accelerate a naïve implementation. We apply some 
classical optimization techniques to our original code to 
increase its performance up to eightfold. It is obvious that 
similar implementation techniques can be used with digital 
signal processing extensions such as SSE3, 3D Now, and 
AltiVec to further increase the performance. We have also 
started to explore massively parallel architecture using the 
same algorithm structure that can be translated into 
hardware in reconfigurable devices. 
 
Optimizations we implemented are as follows: 
1. Pack 4000 dimension array of 8-bit byte into bitmap 
2. Implement 32-dimension vector sum using 32-bit 

registers 
3. Calculate multiple dot products using 32-bit registers 

and instructions 
 
For the sake of simplicity, our initial version of the program 
used 32-bits to represent a Boolean entry in our 4000 
dimension vector. Packing such large Boolean array into a 
bitmap (1-bit for each dimension) reduces the requirements 
for storage and memory bandwidth by 1/32th of the original 
size. In many streaming applications, memory bandwidth is 
an important resource that is often a bottleneck of the 
system performance. Therefore, such reduction in storage 
and bandwidth is necessary. Along with the changes in data 
structure, its content had to be converted to fit into the rest 
of the implementation. The data conversion adds processing 
overhead to decrease the overall performance. Fortunately, 
the vectors are usually sparsely populated in our application 
domain. Therefore, we modify the code to check for non-
zero value in the bitmap before processing the data. Since 
each integer register contains 32 dimensions, the 
performance is significantly increased for sparse document 
vector set. The experimental results show average speedup 
to 2 with above optimizations. 
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Figure 4: 32-dimension vector sum using Integer 

operations. The vector sum is accomplished using 6 
instructions instead of 32x2=64 instructions. 

   
Vector summation task requires that each dimension of the 
vectors to be added together. Given N number of X-
dimension vectors, the total number of operation required 
for the sum is N*X-1. However, given packed bitmap 
representation of the vector, this operation can be 
accelerated. Figure 4 shows how the bitmap vectors can be 
reorganized to apply 32-bit add instructions to sum multiple 
dimensions in parallel. This algorithm can be extended to 
apply for adding several vectors. As the number of vectors 
grows, the number of dimensions that can be processed in 
parallel is reduced. Given sparse vectors, this optimization 
yields significant performance increase. For our test data 
set, this optimization increased the performance to yet 
another twofold. 
 
Dot product task in our algorithm requires multiplication of 
1-bit value with a summation result from above paragraph. 
Due to integer to bitmap conversion, dot product is slower 
than our initial implementation. Therefore, we found that it 
is necessary to accelerate this task. It is obvious that 1-bit 
value can be treated as a conditional Boolean for 
determining whether to add the value to the result. For our 
dataset, it is sufficient to use 16-bits to retain dot product 
results. Therefore, our summation algorithm is efficiently 
implemented to pack two 16-bit summation results into a 
32-bit register. Then, we created a table for 4 different 32-
bit bitmap masks (0x00000000, 0x0000FFFF, 0xFFFF0000, 
0xFFFFFFFF) that corresponds to 2-bit vectors. For every 
two bits of the bitmap, the corresponding mask is logically 
ANDed with the summation results. The masked value is 
added to a register. This process continues until all the bits 
are processed. Then most significant 16-bit of the register is 
added to the lower 16-bits to produce the final dot product. 
This process gave additional twofold speedup over previous 
implementation. 
 
Above optimizations resulted in overall performance 
speedup of eightfold on our experimental dataset. Since 
these optimizations are scalable, an implementation using 
64-bit instruction set will yield yet another twofold in 
speedup. Furthermore, native signal processing extensions 

such as SSE3 and AltiVec not only have wider registers but 
they offer special instructions that further reduce number of 
instructions. We are currently using reconfigurable devices 
such as Field Programmable Gate Arrays (FPGA) to exploit 
the instructional level parallelism. FPGA implementation in 
[11] shows potential performance speedup of 45 times over 
software implementation. 

5. STREAMING HIERARCHICAL PARTITIONING 

In this section we will describe how the hierarchical 
partitioning clustering approach presented in the previous 
three sections may be adapted to cluster an evolving 
document stream. That is, we assume that the collection of 
documents to be clustered is effectively infinite, and that 
documents are presented to us sequentially, one per time-
step, to be dynamically integrated into our current concept 
hierarchy. General bounds and limitations on what can and 
cannot be computed in a data stream model may be found in 
[12]. An adaptation of k-medians (a variant of k-means) to 
operate on data streams is proposed in [13]. 

We assume that there exists a maximal number of 
documents we can store in working memory for fast access, 
m, which is finite, and will saturate quickly. We can assume 
that as each new document that is ingested requires a 
corresponding document to be excreted – several strategies 
for doing so will be discussed below.  

Similarly, processing capacity is also assumed to be quite 
limited, on an amortized per-document basis. That is, we 
can carry out expensive processes such as hierarchical 
partitioning clustering, but only sporadically. In particular, 
we will require per-document processing costs to be sub-
linear, e.g., O(log(m) • log(d)), where m is the number of 
documents in working memory, and d is the data 
dimensionality (e.g., 4000). We have described above how, 
via hardware acceleration, factors of d may be reduced to 
log(d), via parallelization. Below, we will describe how 
documents may be hierarchically clustered in amortized 
time (per document) which is logarithmic in the number of 
documents in the concept hierarchy. 

Our approach is as follows: assume that we have sufficient 
computational resources to carry out hierarchical 
partitioning (or some other high-quality hierarchical 
document clustering algorithm) every t time-steps, for some 
large t. Then, every t time-steps, we will recluster all 
documents in memory according to this method. In order to 
maintain a reasonable quality anytime clustering, two 
questions must be answered: 

• How to quickly choose where to add new 
documents added to the concept hierarchy? 
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• How to quickly choose which documents to 
remove from the concept hierarchy? 

To answer the first, we note that amortized O(log(m)) 
processing time allows use to traverse the concept hierarchy 
a constant number of times (since its depth will grow 
logarithmically). Documents are thus inserted into a tree as 
follows:  

Document-Insert(Document D, Tree T): 
Let L = find-Similar-Leaf(D) 
Replace L with an internal node with children L and D 
 
Find-Similar-Leaf(Document D, Tree T): 
If T is a single leaf, return it 
Compute similarity of D to  

centroids of T’s left and right subtrees 
Let S = subtree with highest similarity 

flipping a fair coin in case of a tie 
Return Find-Similar-Leaf(D,S) 

This kind of simple, greedy-descent matching is known as 
tree-structured vector quantization [14]. It returns a single 
leaf (representing an existing document in the tree), which 
is hopefully most similar to the new document.  

To compute the similarity between a document vector and a 
centroid, the cosine-theta measure is used: 

yx
yxyxsimilarity •=),( . 

This score is feasible for implementation in hardware, and 
robust when applied to document-vectors, as it is 
normalized by vector magnitude (see [7] for more details). 

In order to adequately answer the second question of how to 
choose documents for removal form the concept hierarchy, 
we must consider concept drift - gradual change in the 
distribution and content of the document stream over time. 
Figure 5 outlines three possible regimes of concept drift: 

1. Completely uniform distribution of concepts over 
time. 

2. Abrupt shift in concepts with no continuity. 

3. Gradual drift in the distribution and semantics of 
concepts. 

Assuming that 3 is the correct model to use, we can 
consider two heuristic conditions for removing a document 
from memory: 

1. Another very similar document is contained in 
memory. 

 
 
 
 

Figure 5 – Three possible regimes of concept drift: completely
uniform distribution of concepts over time (top); abrupt shift in
concepts with no continuity (middle}; and gradual drift in the 

distribution and semantics of concepts (bottom) 
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2. No similar documents have been seen for quite 
some time. 

The tradeoff between these two strategies can be 
implemented probabilistically: we can compute the 
(normalized) similarity of each document we insert to the 
result returned by Find-Similar-Leaf, giving a value p 
between zero and one. We will now, with probability p, 
remove said document (i.e., if the two documents are 
identical we will always remove it). Otherwise, we will 
select according to strategy 2. This can be implemented by 
“touching” documents whenever they are returned by Find-
Similar-Leaf – if a document has not been touched in a long 
time, it is a good candidate for removal. For example, we 
can use a “least recently used” (LRU) approximation, such 
as pseudo-LRU [15], which is easily implemented in 
hardware.  

An additional approach we are considering for deciding 
which documents to remove from memory, and more 
generally, how to direct computational effort, is to solicit 
user feedback. 

6. STREAMING EXPERIMENTAL RESULTS 

In this section we describe experimental results with the 
streaming hierarchical partitioning algorithm introduced in 
the previous section. Results are presented on newsgroup 
data, streamed according to a regime designed to simulate  
concept drift - documents are randomly shuffled, but to 
begin, only documents from half of the newsgroups are 
presented. At uniform intervals, a newsgroup is gradually 

introduced into the distribution (and hence the old 
newsgroup density gradually reduced). Chaff appears 
uniformly throughout the entire datastream. The ground-
truth data for the regime is visualized in Figure 6.  
 
In order to run streaming hierarchical partitioning 
clustering, we need to set two parameters – the maximal 
number of documents we are capable of storing in working 
memory for fast access, and how often the set of documents 
stored in working memory will be reclustered. In actual 
deployment of course, we will want to store as many 
documents as possible in fast memory, and recluster as 
often as possible, given hardware constraints and the 
bandwidth of the datastream. Given that our dataset 
contains about 23,000 documents (see above), setting both 
of these to 1000 (i.e., storing 1000 documents in working 
memory, and reclustering them every time 1000 documents 
have been processed the system) should prove illustrative. 
 
To analyze the quality of hierarchical streaming clustering, 
there are two basic factors we consider: 

Figure 7. Purity (top) and discovery (bottom) for naïve  
(base) and non-naïve (enhanced) streaming hierarchical  

clustering. 
 

 
 
 
 
 

Figure 6. Concept drift as simulated in the second  
streaming experiment described in the text. Each vertical  

slice is the concept distribution over 200 consecutive  
documents. Each color is a distinct newsgroup  

(chaff not shown). 
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1. Concept quality – as in the non-streaming case, 

how meaningful are the concepts discovered by the 
algorithm? 

2. Concept discovery – as concept drift occurs , does 
the algorithm effectively identify new concepts? 

 
In a controlled experiment, where we know the ground-truth 
labeling of the documents, concept quality can be measured 
by considering how many non-chaff documents are 
assigned to clusters that are nearly “pure” (at least 90% of 
the documents originating in a single newsgroup). 
Furthermore, we only consider clusters with more than 10 
documents in computing this measure, henceforth referred 
to as a purity score. 
 
Similarly, concept discovery over time can be measured by 
considering, at any given time, how many pure clusters 
have been created corresponding to unique non-chaff labels, 
up until this time. The measure is hence cumulative, and 
will henceforth be referred to as a discovery score. 
 
In order to understand how effective the document insertion 
and removal heuristics described in the previous section are 
at augmenting hierarchical partitioning for streaming 
clustering, we need a baseline. In this procedure, full 
hierarchical partitioning clustering will still be carried out at 
the same regular intervals. However, when new documents 
are ingested, documents will be chosen entirely at random 
to be removed. This methodology will henceforth be 
referred to as naïve streaming clustering.  
 
Comparative purity and discovery scores for both 
procedures are shown in Figure 7. for In order to provide a 
fair comparison between naïve and non-naïve streaming 
clustering, scores are only computed immediately after 
batch clustering has been completed. That is, naïve 
streaming clustering is not penalized for having poor results 
in between batch clustering. 
 
As can be seen, both methods are equally effective in terms 
of purity scores – as expected, since this score is essentially 
determined by the batch clustering, which is identical. 
However, non-naïve streaming hierarchical partitioning 
clustering consistently dominates the naïve variant for 
concept discovery. This recommends it for applications 
where concepts are expected to evolve and new concepts 
are expected to emerge over time, given the goal of concept 
mining. 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

As an extension to our prior Aerospace conference papers 
[1,2, 3, 16] that describe a system for extracting semantic 
content from unstructured text document streams, we have 
developed a clustering system. The implemented system, 
streaming hierarchical partitioning, hierarchically clusters 

streaming content. This algorithm has been designed to be 
implemented in hardware and handle extremely high 
ingestion rates. 

We have provided a detailed hardware-ready design, with 
asymptotic analysis and performance predictions. The 
performance predictions include the quality of clustering, 
and concept discovery.  The streaming hierarchical 
clustering algorithm was able to improve the ability to 
discover concepts. The system has been prototyped and 
tested on a Xeon processor as well as on a PowerPC 
embedded within a Xilinx Virtex2 FPGA. 

The design for hardware implementation of batch 
hierarchical partitioning described in Section 4 can serve as 
the basis for our hardware implementation of streaming 
hierarchical partition. To implement additional streaming 
functionality, some of the same circuitry can be reused – in 
particular the computation of similarity of document 
insertion. The remaining operations are quite simple and 
present no special challenges for conversion to circuitry. 

In the future, we plan to additionally move towards a 
system that: 

• Integrates clustering into our classification system [1, 2, 
16], 

• Continually searches for new and emerging concepts, 

• Allows the resolution of concepts to fade over time to 
allow for streaming with infinite-length data sets. 
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