
A Packet Generator on the NetFPGA Platform
G. Adam Covington, Glen Gibb, John W. Lockwood, Nick McKeown

Stanford University
California, USA

{gcoving, grg, jwlockwd, nickm}@stanford.edu
http://netfpga.org

Abstract— A packet generator and network traffic capture
system has been implemented on the NetFPGA. The NetFPGA
is an open networking platform accelerator that enables rapid
development of hardware-accelerated packet processing applica-
tions. The packet generator application allows Internet packets
to be transmitted at line rate on up to four Gigabit Ethernet
ports simultaneously. Data transmitted is specified in a standard
PCAP file, transferred to local memory on the NetFPGA card,
then sent on the Gigabit links using a precise data rate, inter-
packet delay, and number of iterations specified by the user.
The hardware circuit also simultaneously operates as a packet
capture system, allowing traffic to be captured from up to all
four of the Gigabit Ethernet ports. Timestamps are recorded
and traffic can be transferred back to the host and stored using
the same PCAP format. The project has been implemented as
a fully open-source project and serves as an exemplar project
on how to build and distribute NetFPGA applications. All
of the code (Verilog hardware, system software, verification
scripts, makefiles, and support tools) can be freely downloaded
from the NetFPGA.org website. Benchmarks comparing this
hardware-accelerated application to the fastest available PC with
a PCIe NIC shows that the FPGA-based hardware-accelerator
far exceeds the performance possible using TCP-reply software.

I. INTRODUCTION

The NetFPGA platform allows for the rapid prototype and
development of multi-Gigabit/second line rate networking ap-
plications. The open-source NetFPGA distribution consists of
gateware, hardware and software. Source code and scripts are
provided to build reference designs, enhance a design, or create
new applications using libraries that are provided. The base
distribution of the NetFPGA currently contains four reference
projects – reference router, reference Network Interface Card
(NIC), and hardware accelerated Linux router. In addition,
there are several user-contributed projects available such as the
netflow probe, OpenFlow switch, and the Packet Generator.
As with all NetFPGA projects, the Packet Generator has
a standard directory structure. By using this well defined
directory structure, packaging scripts automate the creation of
the Packet Generator packages [2].

The Packet Generator is a real-time application that is
difficult to implement in software on a PC. Software packages
running on PCs can’t guarantee when packets are transmitted
and don’t allow full line rate testing. Proprietary products from
companies such as Ixia are expensive and not available to the
open-source community. The NetFPGA platform implements
an open-source Packet Generator and packet capture system
that operates at full Gigabit Ethernet line rates.

II. NETFPGA PLATFORM

A. NetFPGA Infrastructure

The NetFPGA is a network hardware accelerator that
augments the function of a standard computer. The plug-in
card provides four ports of Gigabit Ethernet and includes
local Static RAM (SRAM) and Dynamic RAM (DRAM) for
local processing. The NetFPGA attaches to the Peripheral
Communication Interconnect (PCI) bus. The FPGA directly
handles all data-path switching, routing, and processing of
Ethernet and Internet packets, leaving software to handle only
control-path functions [5].

The combination of the NetFPGA and a PC are used
to implement wire-speed Internet routers, precise network
measurement systems, and hardware-accelerated network pro-
cessing systems. The NetFPGA can be used in a desktop PC
and in rack-mounted servers. In the classroom or teaching
lab, the NetFPGA is usually installed inside a desktop PC
so students can access the hardware [7] [3].

III. GATEWARE AND SOFTWARE

One of appealing aspects of the NetFPGA Platform is
the availability of the open-source Verilog gateware, and the
accompanying software. The packages that are released on the
website, www.netfpga.org, not only contain the source code
for projects, but also an environment that allows researchers
the ability to easily create, simulate, and verify in hardware
the applications and features they create. The gateware itself
is designed in a modular fashion to allow users to create and
connect modules in new configurations. Most designs invoke
use of the reference pipeline.

The NetFPGA release has three major components. The first
is the kernel module that is used to communicate with the
NetFPGA hardware. It allows the bitfiles for the FPGA to be
loaded through the PCI bus of a Linux based PC. In addition,
it allows programs to communicate to the NetFPGA through
a register interface implemented using shared memory. The
reference systems use the DMA to send and receive packets
from the card. The register system is used to read statistics
counters and to write control data from software running on
the host to the hardware.

The second part of the NetFPGA release are the common
utilities used to communicate with the card. These utilities
include but are not limited to a bitfile download utility and

John
Typewritten Text
IEEE Symposium on Field-Programmable Custom Computing Machines; April 5-7, 2009

John
Typewritten Text

John
Typewritten Text

John
Typewritten Text

John
Typewritten Text



register read and write programs. The third part of the release
is the reference pipeline, described below.

IV. REFERENCE PIPELINE

The reference pipeline, as shown in Figure 1, is comprised
of eight receive queues, eight transmit queues, and the user
data path. The receive and transmit queues are divided into
two types: MAC and CPU. The MAC queues are assigned to
one of the four interfaces on the NetFPGA, and there is one
CPU queue associated with each of the MAC queues.

O
utput Port Lookup

O
utput Port Lookup

MAC
RxQ

MAC
RxQ

MAC
RxQ

MAC
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

MAC
RxQ
MAC
RxQ

MAC
RxQ
MAC
RxQ

MAC
RxQ
MAC
RxQ

MAC
RxQ
MAC
RxQ

CPU
RxQ
CPU
RxQ

CPU
RxQ
CPU
RxQ

CPU
RxQ
CPU
RxQ

CPU
RxQ
CPU
RxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

MAC
TxQ
MAC
TxQ

MAC
TxQ
MAC
TxQ

MAC
TxQ
MAC
TxQ

MAC
TxQ
MAC
TxQ

CPU
TxQ
CPU
TxQ

CPU
TxQ
CPU
TxQ

CPU
TxQ
CPU
TxQ

CPU
TxQ
CPU
TxQ

User Data Path

Input A
rbiter

Input A
rbiter

O
utput Q

ueues
O

utput Q
ueues

PCI 
HOST

SRAM
Interface

DRAM
Interface

Register
I/O

GigE
RX

GigE
RX

GigE
RX

GigE
RX

GigE
TX

GigE
TX

GigE
TX

GigE
TX

PCI 
HOST

Fig. 1. NetFPGA Reference Pipeline

Users add and connect their modules to the User Data Path.
The Input Arbiter and the Output Queues modules are the main
modules that are present in almost all NetFPGA designs. The
source code for these modules are provided in the NetFPGA
Verilog library. The Input Arbiter services the eight input
queues in a round robin fashion to feed a wide (64-bit) packet
pipeline.

The register system allows modules to be inserted into the
pipeline with minimal effort. The register interface allows
software programs running on the host system to send data
to and receive data from the hardware modules. Registers and
counters are assigned names that are common to the hardware
design and C or Perl software that runs on the host PC.

V. RELATED WORK

The NetFPGA Packet Generator is not the first system
built to generate packets. Hardware systems from Ixia [4]
stochastically generate network traffic. Ixia systems allow the
users to create and save synthetic traces to be rerun in the
future. These systems can be useful however they do not allow
the replay of previously captured traffic from live networks,
such as PCAP files.

Software programs such as tcpreplay [6] and TCPivo [1]
allow the replay of saved network traffic. These software
programs, called trace-driven packet generators, run on off-
the-shelf computers. These systems have trouble replaying
traffic at line rate with consistency. When running tcpreplay
multiple times it becomes apparent that the time between
packets varies due to factors such as the CPU load on the
system, disc I/O, and variation in the time servicing inter-
rupts. The inter-packet jitter doesn’t allow experiments to be

performed without variations in the traffic. TCPivo attempts to
minimize these problems by employing a low latency kernel,
and implementing network trace prefetching along with low
latency counters.

On the NetFPGA, PCAP data is loaded into the shared
SRAM directly attached to the FPGA. The PCAP data is then
played out of the four Gigabit ethernet ports at line rate. In
addition, the NetFPGA Packet Generator enforces the inter-
packet delays and/or rate limits the four ports individually.
This allows experiments to be run with extremely predictable
and repeatable results. Software is used to load the parameters
into hardware. Once the parameters are loaded and the replay
is enabled the hardware controls the streaming of traffic.
The NetFPGA Packet Generator is not impacted by kernel
preemption or the latency of accesses across the PCI bus.

VI. PACKET GENERATOR ARCHITECTURE

The architecture of the Packet Generator utilizes the refer-
ence pipeline as a foundation. The main features of the Packet
Generator are inserted into the User Data Path. Only minor
modifications were required outside of the User Data Path. As
shown at the top-left of Figure 2, a timestamp module 1 was
added before the MAC fifos. This allows incoming packets to
be timestamped as they are received by the hardware. This
timestamp is later used during the creation of a PCAP file
enabling much better precision than timestamping performed
as the kernel received each packet from the hardware.

A. Input Arbiter/Output Port Lookup

Inside the User Data Path, two unmodified modules were
used from the original NetFPGA library: the input arbiter and
the output port lookup from the reference NIC design. The
reference NIC output port lookup directs traffic received on
the MAC ports to the corresponding CPU queues to enable
the packet capture feature. This allows all incoming packets
to be forwarded to the software host using the CPU DMA
queues.

B. Packet Capture

The Packet Capture module performs the roles of (1) com-
piling aggregate statistics for generation/capture runs (such as
number of packets received and total capture time) and (2)
stripping timestamps from the packets when the generation/-
capture function is disabled. When the Packet Generator is
disabled, the circuit operates as a normal quad-port NIC card.

C. Output Queues

The design of the Output Queues module is based on the
design of the SRAM output queues from the NetFPGA library;
however, there is a slight modification. The SRAM used for
the output queues is divided into 12 queues instead of the
original 8 queues that the reference module implements. This
allows the four new queues that are used to store the PCAP
data to transmit data when the Packet Generator is enabled.

1The timestamp module is based upon the timestamp module developed as
part of a time synchronization project.



O
utput P

ort Lookup

MAC
RxQ

MAC
RxQ

MAC
RxQ

MAC
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

MAC
RxQ
MAC
RxQ

MAC
RxQ
MAC
RxQ

MAC
RxQ
MAC
RxQ

MAC
RxQ
MAC
RxQ

CPU
RxQ
CPU
RxQ

CPU
RxQ
CPU
RxQ

CPU
RxQ
CPU
RxQ

CPU
RxQ
CPU
RxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

MAC
TxQ
MAC
TxQ

MAC
TxQ
MAC
TxQ

MAC
TxQ
MAC
TxQ

MAC
TxQ
MAC
TxQ

CPU
TxQ
CPU
TxQ

CPU
TxQ
CPU
TxQ

CPU
TxQ
CPU
TxQ

CPU
TxQ
CPU
TxQ

User Data Path

Input A
rbiter

O
utput Q

ueues

GigE
RX

GigE
RX

GigE
RX

GigE
RX GigE

TX

GigE
TX

GigE
TX

GigE
TX

PCI 
HOST

SRAM
Interface

Register
I/O

PCI 
HOST

Time Stamp

P
acket C

apture

P
ktG

en O
utput S

el

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Time StampTime Stamp

P
acket C

apture

P
ktG

en O
utput S

el

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Rate Limiter

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Fig. 2. Packet Generator Pipeline (new components highlighted)

The size of the 12 queues is determined by registers that the
packet generator software sets as it loads PCAP files. This
allows the queues to be independently sized to ensure that
transmit queues are sized to match the PCAP file sizes and
thus maximize the space available for receive queues.

D. Packet Generator Output Select

The Output Queues are connected to the Packet Generator
Output Select module. This module determines which of the
12 output queues should be connected to the eight output
queues in the reference pipeline. In essence, this module
multiplexes the output queues to the eight reference output
queues. This enables the design to have two transmit queues
per MAC port—one which can be used for transmission while
a PCAP file is being loaded into the other.

E. Rate Limiter and Delay Module

Each of the eight reference output queues have both a rate
limiter, and a delay module connected to them. This allows
the Packet Generator to add a delay or rate limit to each of the
eight output queues individually. The delay and the rate are
both set by registers that are written by the packet generator
software running on the host.

F. Registers

Each of the hardware modules can be controlled through
registers via software. The key registers used in the Packet
Generator include: delay, rate limit, and number of iterations.
Each of the rate limit and delay modules can be enabled or
disabled by individual enable registers. The Packet Generator
contains a global enable register that starts and stops the
sending of packets.

VII. PACKET GENERATOR SOFTWARE

The Packet Generator software consists of a Perl script
called packet generator.pl. This file is found in the software
directory of the Packet Generator package.

The Packet Generator can be run on one or all of the four
ports of the NetFPGA. To specify which PCAP file is loaded
into a queue, the -q option is used. The Packet Generator loads
full packets into the hardware. If the PCAP file is larger than
the memory available, then only the first part of the PCAP file
is loaded.

There are four additional options available on a per port
basis. The Packet Generator allows the user to specify the
transmission rate of each queue, the delay between packets, the
number of iterations to replay, and whether or not packets be-
ing received by the NetFPGA MAC ports should be captured.
If capture is enabled, the packets are stored in SRAM then
transferred to the host PC and written to a file using standard
PCAP format. This allows easy comparison of the incoming
packets to the packets being sent by the Packet Generator,
which is useful for verification of other modules connected to
the NetFPGA.

Software on the host prints out the number of packets that
were loaded into the queues from the PCAP file and it reports
the rate limit setting of each queue. When capture is enabled,
the number of packets received, number of bytes, run time,
and transmission rate are all reported.

VIII. EXPERIMENTATION

The NetFPGA Packet Generator operates similar to that
of the software program, tcpreplay. We ran two experiments
with the tcpreplay and the Packet Generator. We configured a
computer system that contained a AMD dual core processor
running at 2.5 GHz and an Intel dual port e1000 PCI-express
x4 NIC. We then used a PCAP file that contained 43 packets
and 25383 bytes. Using tcpreplay we tested the average rate
that the system could achieve when playing this file on
one port and also on two ports simultaneously. The Packet
Generator was then used to play the same PCAP file with
both one port and two ports simultaneously. Each experimental
setup (i.e. one port, and two ports) were run ten times and the



0

10

20

30

40

50

60

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Variation in Packet Arrival Times (usec)

Nu
m

be
r 

of
 P

ac
ke

ts

Distribution of Packets
sent late by software

Distribution of Packets
sent early by software

NetFPGA

tcpreplay

NetFPGA

tcpreplay

430

Fig. 3. Measuring the Variation of Packet Arrival Time of tcpreplay (msec)

averages are shown in the table below (Table I). Because the
NetFPGA hardware runs at line rate, it can play traffic at full
line rate.

TCPreplay NetFPGA
Number of Ports Rate Rate

One 901.31 Mbps 1000 Mbps
Two 896.23 Mbps 1000 Mbps

TABLE I
AVERAGE LINE RATE FOR TCPREPLAY AND THE PACKET GENERATOR

USING ONE AND TWO PORTS

Being able to reliably repeat an experiment is a key feature
of the NetFPGA packet generator. When using software pro-
grams running on a PC, it is difficult to ensure that inter-packet
delays are always the same between experiments. Figure 3
shows the packet arrival time distribution of tcpreplay. When
tcpreplay is run in software, most packets obtain a 5-18
microsecond delay from when there were expected to arrive.
Few packets are within plus or minus four microseconds of
the expected arrival time. These variations in packet arrival
time limits the precision experimenters can achieve. Using the
NetFPGA, we can ensure that the delay between packets and
the rate of sending is the same every time an experiment is
run.

IX. DEVICE UTILIZATION

The Packet Generator uses 83% of the available slices on the
Xilinx Virtex II Pro 50 FPGA. The largest use of the slices
are from the Packet Capture Selector and the replication of
the rate limiter and delay modules on each of the eight output
ports. Sixty percent of the block RAMs available are used. The
main use of block RAMs occurs in the FIFOs used between the
modules and the main input and output queues of the system.

X. CONCLUSION

The NetFPGA Packet Generator uses the reference pipeline
to replay PCAP and capture packets at Gigabit/second line
rate. The NetFPGA implementation can reliably replay time
sensitive traffic while giving users the ability to change the

XC2VP50 Utilization
Resources Utilization Percentage

Slices 19674 out of 23616 83%
4-input LUTS 30049 out of 47232 63%

Flip Flops 22570 out of 47232 47%
Block RAMs 140 out of 232 60%
External IOBs 356 out of 692 51%

TABLE II
DEVICE UTILIZATION FOR THE PACKET GENERATOR

rate of the queues, the delay between packets, and the number
of iterations that the PCAP files are cycled through. This
application can be used to provide reliable test data to test
multi-Gigabit/second networks and network appliances.

REFERENCES

[1] W. chang Feng, A. Goel, A. Bezzaz, W. chi Feng, and J. Walpole. Tcpivo:
A high-performance packet replay engine. In Proceedings of the ACM
SIGCOMM workshop on Models, methods, pages 57–64, 2003.

[2] G. A. Covington, G. Gibb, J. Naous, J. Lockwood, and N. McKeown.
Methodology to contribute netfpga modules. In International Conference
on Microelectronic Systems Education (submitted to), 2009.

[3] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown.
Netfpga: An open platform for teaching how to build gigabit-rate network
switches and routers. In IEEE Transactions on Education, August 2008.

[4] Ixia. Ixia website. http://www.ixiacom.com/.
[5] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and J. Luo. Netfpga - an open platform for gigabit-
rate network switching and routing. In International Conference on
Microelectronic Systems Education, 2007.

[6] tcpreplay developers. tcpreplay website.
http://tcpreplay.synfin.net/trac/wiki/tcpreplay.

[7] G. Watson, N. MxKeown, and M. Casado. Netfpga - a tool for network
research and education. In 2nd Workshop on Architecture Research using
FPGA Platforms (WARFP), Febuary 2006.

John
Rectangle




