
OpenPipes: Prototyping high-speed networking systems

Glen Gibb, David Underhill, Adam Covington, Tatsuya Yabe, and Nick McKeown
Stanford University, NEC System Platforms Research Labs

ABSTRACT
High-speed networking systems are typically built from many mod-
ules strung together in a pipeline. Examples of such systems in-
clude routers, firewalls, load-balancers and IDSs. High-speed sys-
tems must run at line-rate, and so commonly require at least some
modules to be implemented in custom hardware. A developer faces
two problems when building these systems:

1. How do they partition their design over different sub-
systems; which modules belong in CPU, FPGA, ASIC,
NPU? In current systems, they have to decide at design time;
changing the partition later is very hard, and often requires
significant redesign.

2. How do they test modules—realistically—before putting in
all the effort/money to put them in specialized hardware
(FPGA or ASIC)?

In our group, we build a lot of high speed networking systems,
and often face these problems. We decided to create a reusable
platform that we—and others—can use when designing and proto-
typing high speed networking systems. In particular, our system:

1. Allows a design to be repartitioned very easily—modules can
be moved from one physical system to another, even while
the system is running. This gives lots of flexibility to the
designer, who is freed from worrying about how to “fit” the
application on limited resources.

2. Allows modules to be tried in software in the running sys-
tem, and later be replaced by hardware, without the design
changing—in fact, we can do this while the system is run-
ning.

The operation of our platform can be summarized by three key
ideas. The first two are shared with other platforms—the third is
unique to our platform and provides us with the unique capabilities
listed above. The three ideas are:

• We assume the system is made of modules.
• We connect the modules together using the network.
• We use OpenFlow [2] to connect the modules together.

As already mentioned, the use of an OpenFlow network is the
key change—it allows modules to be moved around in the network,
from one subsystem to another, while the system is running. This
solves both of our problems: (1) It allows repartitioning dynami-
cally; and (2) It allows modules to be implemented in hardware,
software, or both. This allows the system to migrate, over time,
from software to hardware; or for developers to verify their designs
by comparing the output of both hardware and software modules in
the running system.

We call our platform OpenPipes as it uses OpenFlow to con-
struct a modular pipeline. To demonstrate OpenPipes, we have
built an IDS out of multiple modules, and ”plumbed” the modules
together using OpenFlow. The modules are written in Verilog on

NetFPGA [1] and as software process on Linux PCs; and between
them, they form a pipeline that process packets for an IDS We show
that—like Click—OpenFlow can be used to quickly build new sys-
tems from existing modules. But with OpenFlow, the modules can
reside on different machines, and be moved around seamlessly dur-
ing operation. For example, we can pick up a particular ”signature
matching module” while the IDS is running, and move it to another
machine. Or we can insert a module that identifies a new set of
threats while the system is running. Or we can run the pipeline in
reverse. Or put some modules in software and some in hardware.
All the modules are plumbed together using OpenFlow, regardless
of where they reside in the network. Furthermore, there are no en-
capsulation or tunneling protocols used—the modules have unique
addresses in the network.

Our platform’s design was inspired by Click [3]. We wanted
a system that has the simplicity of Click that also supports mod-
ules written in hardware and the ability to move modules to other
CPUs/FPGAs in the network.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

Keywords
OpenFlow, OpenPipes, modular design

1. DEMONSTRATION
We demonstrate a video processing application built using the

OpenPipes platform. The video processing application takes a live
video stream and performs a number of transformations on that
stream. Video is fed into the system from a camera providing a
live feed and the resultant output stream is displayed on a moni-
tor to show the transformations perfomed by the application. The
transformations that are performed can be altered by changing the
active modules.

A graphical user interface (GUI) is used to demonstrate Open-
Pipes and our the video processing application. Figure 1 shows a
conceptual overview of the GUI. The primary section of the display
shows the active state of the system. Modules are located inside
“module hosts” (NetFGPAs or PCs) and connections exist between
modules. Using the GUI the user instantiates modules by dragging
them from a palette of available modules, reconnects modules and
configure individual modules.

We use a simple video processing application in order to clearly
show the main features of OpenPipes. The modules comprising
the baseline application are depicted in Figure 2. In this configu-
ration the video stream is fed initially to a classifier module which



A B

C

D E

In

Out

E

D

C

B

A

F

Modules in 
tool palette

Module hosts 
(NetFPGAs, 
PCs, etc)

Modules 
instantiated 
inside a host

Connections between 
modules via 

OpenFlow network

Figure 1: Basic overview of the OpenPipes GUI

In

Out

Color 
classifier

Rotate 
image

Flip image
Color 

inversion
Convert to 
grayscale

Re
d

G
re
e
n B

lu
e

Other

Figure 2: A very basic video processing system

determines the primary color-cast of the video stream. Simple celo-
phane filters are placed in front of the video camera to provide the
color-cast within the stream. The color-bast of the stream is used
to determine which of the alternate processing pipelines to send the
video over. Each pipeline performs a different sequence of trans-
forms on the video—examples of tranformations include conver-
sion to greyscale, flipping about either axis, rotation, and feature
detection.

Using the baseline video application as a starting point we
demonstrate the ability to insert modules into a running system and
to verify the operation of a new module.

Dynamic insertion of a module into the system
A new software-based smoothing module is downloaded into the
system. This is connected to the output of one of the color-cast
pipelines as shown in Figure 3. The output of this pipeline now
smoothes each frame.

Testing of new modules
Once confidence has been gained in the correct operation of the
software-based smoothing module, the operator of the system can
implement the module in hardware. To verify the operation of the

Convert to 
grayscale

Smoothing/
blur

Re
d

(fr
om
 co
lor
 cl
as
sifi
er
)

New module 
inserted into 
system

Flip image

Figure 3: Insertion of a smoothing/blur transform into the red
color-cast processing branch

Convert to 
grayscale

Smoothing/
blur (SW)

Smoothing/
blur (HW)

Comparison 
module

Red

(from color classifier)

Figure 4: Comparison of a software and hardware implemen-
tation of the smoothing/blur transform

hardware module the operator operates the software and hardware
modules in parallel and feeds the output into a comparison module
that compares the output of the two modules. This is shown in
Figure 4.

2. REFERENCES
[1] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,

P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
NetFPGA—an open platform for gigabit-rate network
switching and routing. In MSE ’07: Proceedings of the 2007
IEEE International Conference on Microelectronic Systems
Education, pages 160–161, 2007.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, April 2008.

[3] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The
click modular router. In SOSP ’99: Proceedings of the
seventeenth ACM symposium on Operating systems
principles, pages 217–231, New York, NY, USA, 1999. ACM.


	Demonstration
	References

