
HIGH SPEED DOCUMENT CLUSTERING IN RECONFIGURABLE HARDWARE

G. Adam Covington, Charles L.G. Comstock, Andrew A. Levine, John W. Lockwood, Young H. Cho

Applied Research Laboratory, Washington University One Brookings Drive, Campus Box 1045

St. Louis, MO 63130-4899 USA

{gac1, aal1, lockwood, young}@arl.wustl.edu, cc1@cse.wustl.edu

http://www.arl.wustl.edu/projects/fpx/reconfig.htm

ABSTRACT

High-performance document clustering systems enable

similar documents to be automatically organized into groups.

In the past, the large amount of computational time needed

to cluster documents prevented practical use of such sys-

tems with a large number of documents. A full hardware im-

plementation of the K-means clustering algorithm has been

designed and implemented in reconfigurable hardware that

clusters 512k documents rapidly. This implementation, uses

four parallel cosine distance metrics to cluster document

vectors that each have 4000 dimensions. The synthesized

hardware runs on the Field Programmable Port Extender

(FPX) platform at a clock rate of 80 MHz. Although the

clock rate on the Xilinx VirtexE 2000 is slower than a CPU,

the implementation runs 26 times faster than an algorithmi-

cally equivalent software algorithm running on an Intel 3.60

GHz Xeon. The same architecture was used to synthesize a

faster and larger design for the Xilinx Virtex4 LX200. This

larger implementation can contain up to 25 parallel cosine

distance metrics. The implementation synthesized with a

clock rate of 250 Mhz and outperforms the equivalent soft-

ware by a factor of 328.

1. INTRODUCTION

As the amount of information generated from worldwide

sources increases, humans can no longer keep up with the

task of reading and categorizing the data. To help orga-

nize massive amounts of data, a document clustering sys-

tem can automatically group related content. Such content

requires comparison of data with high dimensionality. To

cluster high dimensional vectors, microprocessor systems

inefficiently perform comparisons sequentially. The algo-

rithms used for clustering have large amounts of computa-

This research was sponsored by the Air Force Research Laboratory,

Air Force Materiel Command, USAF, under Contract Number MDA972-

03-9-0001. The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of AFRL or the U.S.

Government.

tions that can be run in parallel. These parallel computa-

tions can be implemented in hardware to achieve high per-

formance. Field Programmable Gate Arrays (FPGAs) can

implement clustering algorithms at high speeds and allow

their parameters to be modified through reprogramming. Ap-

plication Specific Integrated Circuits (ASIC) can also achieve

speedup though parallelism, however they lack the ability to

be re-optimized for different parameters of an algorithm. In

this paper, we demonstrate a complete system that uses K-

means clustering to automatically group related documents

together that is implemented in hardware using FPGAs.

1.1. Related Work

Duda and Hart [1] described the original K-means algorithm.

Estlick et. al.[2] and Leeser et. al.[3] have used K-means

with the Minkowski distance metric L1 to cluster hyper-

spectral images using a hybrid of a software and hardware

approach. They compared the use of different Minkowski

distance metrics, Manhatten Distance (L1), Euclidean Dis-

tance (L2) and Max Distance (L∞), but determined that L1

was the one that would fit best for their hardware. How-

ever, these distance metrics are not well suited for clustering

sparse, high dimensional data.

For clustering documents with high dimensionality, the

cosine theta distance metric is preferred. The cosine theta

distance or spherical distance intuitively provides better dis-

tance in high dimensions than euclidian distance.

2. K-MEANS CLUSTERING OF DOCUMENTS

2.1. Concept of Clustering Documents

Borrowing from concepts used in Latent Sematic Indexing

(LSI), documents can be described using a vector ~di where

each dimension of the vector counts the occurrences of words.

Given a set of N documents, D, where each document ~di∈1...N

is described by L dimensions or bins. Occurrences of sim-

ilar words can map to the same dimension (or bin). Doc-

uments are partitioned into K clusters by minimizing the

distance between each document and the cluster centroid.

John
Text Box
High Speed Document Clustering in Reconfigurable Hardware; by G. Adam Covington, Charles L.G. Comstock, Andrew A. Levine, John W. Lockwood, Young H. Cho; 16th International Conference on Field Programmable Logic and Applications (FPL'06); August 2006, Paper 189

 Concept Space

Spain

Animals

1 0 0 1

Dogs chase balls Cats chase mice Madrid, SpainDocuments

Document Vectors

Concepts

1 0 1 1 0 2 0 01 0 0

1 0 .5 1 .5

0 2 0 0 0

Fig. 1. Documents mapped into L dimensional vectors are clustered into groups of related concepts

The “centroid” of a cluster, is the mean of all documents in

a cluster. This is an approximate representation of all doc-

uments in that cluster. Figure 1 shows three documents be-

ing mapped into document vectors. These document vectors

and their assignments are then used to calculate the cluster

centroids.

2.2. The K-means Algorithm

The K-means algorithm clusters documents together in a

way that minimizes the cosine distance between each doc-

ument d ∈ D and the cluster centroid Ck for which it is

assigned.

K
∑

k=1

∑

d∈Ck

~d · ~Ck

|~d| · | ~Ck|

Specifically, the K-means algorithm operates as follows:

1. Assign document vectors to a cluster using an initial

seed.

2. Initialize cluster centroids using values selected from

initial document assignments.

3. For each document d ∈ D

(a) Recalculate distances from document ~d to cen-

troids, and find the closest centroid Cmin.

(b) Move document ~d from current cluster Ck into

new cluster Cmin and recalculate the centroid

for Ck and Cmin.

4. Repeat step 3 until either the maximum epoch limit

is reached or an epoch passes in which no changes

in document assignments are made. An epoch is a

complete pass through all documents.

For our implementation of K-means clustering, we as-

sign the initial seed clusters by randomly assigning docu-

ments to initial clusters. K-means is commonly calculated

using double precision arithmetic, however for a hardware

implementation, we utilize reduced precision integer repre-

sentations to increase the operating frequency of the circuit

and to fit the design into the available space on an FPGA. We

analyze the effects of limited precision arithmetic on docu-

ment classification accuracy in Section 4.3.

2.2.1. Centroid Update

Cluster centroids are computed as the average across all of

the document vectors in each cluster. To recalculate the cen-

troids after a document update, we add or subtract the docu-

ment vector from the unscaled centroid dimension
~Cunscaled and then average the centroid into the scaled cen-

troid dimension ~Cscaled for distance comparison. The aver-

age is not necessarily calculated by dividing by the absolute

number of documents in the cluster Ccount, but by a scaled

approximation of it.

~Cscaled =
~Cunscaled

Ccount

However in order to do this calculation in integer arith-

metic it is necessary to rescale the centroid and the document

count. In our implementation we use the following equation.

~Cscaled = min

(

255,
2 · ~Cunscaled

min(Ccount/16, 1)

)

(1)

We use of the minimum function to avoid divide by zero

from under scaled document counts, as well as ensuring that

the final scaled value fits within the 8 bits allocated per cen-

troid dimension.

2.2.2. Cosine Theta Distance Metric

In order to find the distance between a document and a cen-

troid and thus the closest centroid to a document, the cosine

theta distance metric is used. The Cosine Distance metric is

defined as follows. Given a document vector ~D, and a cen-

troid vector ~C, the spherical distance between ~D and ~C is

defined as:

cos(θ) =
~D · ~C

| ~D| · |~C|
(2)

Cosine theta distance D is ranged D ∈ [0, 1]. However,

in order to represent the cosine distance as integers it was

necessary to scale cosine theta into a larger range to approx-

imate fixed point arithmetic.

The integer representation of the equation:

cos(θ) =
16
(

16(~D·~C)

|~C|

)

| ~D|
(3)

To allow for further speedup by reducing the number of

divisions necessary1:

cos(θ) =
16(~D · ~C)

min((|~C| · | ~D|)/16, 1)
(4)

The constant multiple of 16 was chosen to rescale the

range of distances into D ∈ [0, 255]. Experimentation was

performed with different constants. We found these methods

of scaling to be effective when used with data from a real

corpus of documents. While profiling the software experi-

ments we determined that around 95% of the computational

time was spent calculating the distances.

2.3. Hardware

The K-means hardware implementation was designed to ex-

tend a content classification system [4]. This classification

system uses a number of methods from Latent Semantic

Analysis (LSA) to map text into a reduced feature space.

The mapping of words to features in the 4000 dimensions

is done via a mechanism called the Word Mapping Table

(WMT). Words are changed into 20-bit memory locations

via a hash. For example:

HASH(“MADRID”) = 0x2c563 (101,603)

In our hardware implementation, the output of the hash

represents an index into a 1 Megabyte bank of SRAM. Val-

ues stored in the memory locations are indexes in the 4000

dimension feature vector. When retrieved, these values en-

able an increment of a counter for the specific feature. The

counter bins of the feature vector saturate at 15.

1The bottom division can be implemented as a bit shift instead of a

divide.

Fig. 2. The FPX platform used to implement K-means Clus-

tering

WMTs can be produced in different ways by various

LSA algorithms [5]. In all cases, the goal is to map the

document into a feature space that promotes uniqueness for

concepts. Words such as CAT and CATS could both map

to the same bin in the 4000 dimensions if the algorithm

determined that grouping the similar words was effective.

The traditional method of stemming would group the two

words together while Information Theory could find a dif-

ferent information contribution between the two words and

thus might separate the two into different bins. The docu-

ment vectors generated from the content classification sys-

tem are well suited for an unsupervised learning technique,

such as clustering.

3. IMPLEMENTATION

3.1. Implementation Platform

To demonstrate the operation of clustering in hardware, we

synthesized a circuit using VHDL-specified modules. These

modules were then used to implement logic in a VirtexE

FPGA on the Field Programmable Port Extender (FPX). The

FPX platform is an open hardware platform that allows hard-

ware designers to rapidly prototype circuits using VHDL

modules [6].

The FPX platform processes documents sent to it di-

rectly over the Internet or an Intranet [7]. Protocol Wrap-

per modules separate the application data from the network

protocol [8]. The data is sent to circuits in flows carried as a

sequence of TCP/IP packets. Modules on the FPX platform

receive data through TCP/IP packets and track their context

to process each flow as a document [9]. As a way to demon-

strate just the operation of the K-means clustering hardware,

both document vectors and the initial concept vectors (clus-

ter centroids) can also be loaded into the FPGA by using

UDP/IP packets.

The FPX platform when equipped with two banks of

512MB SDRAM, can cluster 524,288 items (219). Each

record of 2048 (211) bytes represents an item consisting of

the 4000 element, 4-bit vector and along with 48 bytes of

metadata about the flow. Identifiers and static information,

such as the sum of squares of the feature vector, are put into

the last 48 bytes.

3.2. Hardware/Software Communications

In order to communicate with the hardware implementation

running in the FPX, a software program was created that in-

terfaces to the hardware using a well-defined protocol. This

program reads the 4000 element document vectors and ran-

domly assigns the documents to initial clusters. The sum of

squares for each of the document vectors are then computed.

The document assignments are used to calculate the start-

ing concept vectors, the number of documents contained,

and the sum of squares for each cluster. The document vec-

tors and their cluster assignments are then packed into UDP

packets and sent to hardware. The initial concept vector data

are then sent to the hardware using UDP packets. After the

document vectors and concept vectors are loaded into hard-

ware, the command to start clustering is sent.

After the clustering is started, results of the clustering

are transferred from hardware to software. A second pro-

gram was created to receive the document assignments at

the end of each epoch. When the algorithm converges or

passes the epoch limit, the final document assignments are

sent. This information is then formatted into XML files and

stored on a network-attached PC.

3.3. Hardware Architecture

The K-means clustering algorithm performs three primary

operations. These operations are: (1) calculating the dis-

tances between documents and centroids, (2) identifying the

correct cluster assignments, and (3) updating the centroids

of the clusters. In order to implement the algorithm in hard-

ware, three primary modules were created: Cosine Distance,

Greedy Accept, and Update. In addition to these modules,

control modules were needed to load and run the hardware

clustering system. A diagram of the K-means clustering

hardware is shown in Figure 3. Document vectors are stored

in off-chip SDRAM. The 28-bit concept vectors are stored

in off-chip SRAM. The reduced 8-bit concept vectors are

stored on the FPGA using on-chip BlockRAMs.

3.3.1. Cosine Distance Module

The cosine distance module is replicated for each cluster that

is stored on the FPGA. This allows all the cosine distances

of one document vector to each centroid in the FPGA to

Cosine

Distance

Update

K-means

Control

Greedy Accept

SDRAM Controller SRAM Controller

Report
Control

Processor

Concept

Storage

Fig. 3. Hardware Clustering Block Diagram

be calculated in parallel. This module contains all the cir-

cuitry required to calculate a cosine distance. This circuitry

consists of two square roots, dot product, and a division.

This circuitry can produce a cosine distance every 294 cy-

cles (3.675 µs when running at 80 Mhz). The square root

function was created using the Xilinx core generator.

In addition to the distance metric circuitry the module

also stores all the information related to the 8-bit concept

vector. The concept vectors are stored in on-chip memory

on the FPGA and allow for highly parallel computations.

The sum of squares for the concept vector and the number of

documents in the cluster are also stored within the module.

These values are all used in the calculation of the cosine

distance and are also available for other modules such as the

update module.

3.3.2. Greedy Accept

After calculating the cosine distances (in parallel) a deci-

sion is made to determine if the document vector should be

assigned to a different cluster. Since K-means is a greedy

algorithm, the best distance is chosen as the new document

assignment. This module compares all the cosine distances

that are calculated and chooses the best assignment. If the

best distance (the closest one to the true cosine theta calcu-

lation) is held by two or more concept vectors the concept

vector with the smallest index value is chosen.

3.3.3. Update

As the document vector is streamed into the cosine distance

module, the update module caches the entire vector. While

caching the document vector the update module looks at

each 4-bit element and creates a zero-flag indicating whether

or not the element is zero. This flag allows the update mod-

ule to identify only the non-zero document elements and up-

date only the corresponding concept elements. This is useful

when the document vectors are sparse.

The module uses the extended 28-bit concept vector val-

ues stored in SRAM to recalculate both the 28-bit and the

truncated 8-bit concept vectors. The extended vector val-

ues are necessary in the update procedure to avoid a cascad-

ing precision error. If the truncated 8-bit values were used,

the process of expanding the 8-bit value into a 28-bit value

would produce a large rounding error. These errors would

prevent the K-means algorithm from achieving convergence.

3.3.4. Load Processor

The load processor receives the data from the UDP packets

that are sent to the hardware. It then identifies whether the

data within the packets represents a document vector, 8-bit

concept vector, 28-bit concept vector or a control packet.

The module then loads all the document vectors into the

FPX’s SDRAM. The 28-bit concept vectors are loaded into

the SRAM banks. The 8-bit concept vectors are sent to the

relevant cosine distance module for storage. When the con-

trol packet is sent the load processor starts the clustering by

signaling the K-means controller.

3.3.5. K-means Control

The heart of the K-means algorithm is contained in the K-

means controller. This controller handles all the accesses to

document vectors. It starts the cosine distance calculations

and depending on information it receives from the greedy

accept module it reads another document vector or starts the

update procedure for the current document. This controller

is designed to output the document assignments after every

epoch. It also maintains all the necessary information to

determine if the clustering has reached convergence.

3.3.6. Report

The report module is used to send information from the clus-

tering hardware to a computer for analysis. This module

buffers the document identifiers and the assignments for each

of the documents and sends the information out of the hard-

ware. The module is controlled by the K-means controller.

4. RESULTS

4.1. Software Simulation and Performance

Software programs were created to perform multiple varia-

tions on the K-means algorithm. These variations were used

to test convergence properties and determine the accuracy of

3.68
3.68

3.68

175.37

386.08

100.93

187.84

433.55

234.98

429.53

952.59

95.36

-150

50

250

450

650

850

1050

4 10 25

 Number of Clusters, K

R
u

n
n

in
g

 T
im

e
 (

u
s
)

hardware

char

int

double

Representation

Fig. 4. Average time for each software implementation and

the hardware implementation comparing one document to

all K concepts.

0

50

100

150

200

250

300

350

400

450

50 70 90 110 13
0

150 170 19
0

210 230 25
0

270 290

Clock Speed (MHz)

H
a

rd
w

a
re

 S
p

e
e

d
u

p

K = 4

K = 10

K = 25

Fig. 5. Hardware speedup in comparison to the character

implementation in software as clock frequency increases

the system. Variations in the implementation parameters in-

cluded the use of several modules with reduced precision

representations, square root versions, and different varia-

tions on the cosine distance metric. Most importantly, these

programs allowed for comparisons of the reduced precision

arithmetic to double and integer representations. Based on

the simulation results, a hardware implementation was cre-

ated that utilized 8-bit resolution for the concept vector ele-

ments and 4-bit resolution for the document vector elements.

Performance of the K-means software implementations

and the hardware implementation can be seen in Figure 4.

The chart shows the average time required for the software

to calculate the distances from one document to all concept

vectors. As the number of concept vectors increases, the av-

erage time required to calculate the distances also increases.

This is due to the fact that software is written to run sequen-

XCV2000E Utilization XC4VLX200 Utilization

Resources Utilization Percentage Utilization Percentage

Slices 17654 / 19200 91% 19674 / 89088 22%

4-input LUTS 16434 / 38400 42% 19355 / 178176 10%

Flip Flops 29685 / 38400 77% 30048 / 178176 16%

Block RAMs 65 / 160 40% 50 / 336 14%

Table 1. Device utilization for Hardware K-means with four concepts across different platforms

tially while the hardware can perform multiple operations in

parallel.

4.2. Hardware Implementation Results

The hardware is able to calculate all the distances from a

document vector in 3.675 µs when running at 80 MHz. As

the clock frequency of the circuit is increased, the amount

of time required to calculate all the distances decreases. A

hardware clustering system running at 250 Mhz would re-

quire 1.176 µs to produce all the cosine distances. Since

all the distances are calculated simultaneously, the timing

would not change when the number of concept vectors in-

crease. Given a software implementation that runs in 95.36

µs with four clusters and clustering hardware running at 80

MHz, the hardware is 25.95 times faster. As more clus-

ters are added and the hardware clock speed is increased the

speed gain of the hardware increases (Figure 5). We project

that when the clustering system is implemented on the Vir-

tex4 LX200 FPGA using a clock frequency of 250 MHz,

the hardware should achieve a performance that is 328 times

faster then software.

Our hardware implementation of the circuit performs op-

erations in a way that is highly parallel. The cosine distance

module is replicated with every concept vector stored within

on-chip memory. Because of this, the number of clusters

that can be processed is limited by the amount of on-chip

memory and the resource utilization of the distance module.

The Xilinx VirtexE 2000 can support up to fifteen concepts

in the on-chip memory, however there are only enough logic

slices to support four cosine distance modules. The current

system can only contain four distance modules per VirtexE

2000.

The same hardware design can support up to 25 when

implemented on a Xilinx Virtex4 LX200. This Xilinx FPGA

has an increased number of logic slices in addition to an in-

creased number (and size) of on-chip memory. The cluster-

ing hardware will also experience an increase in the clock

frequency when implemented in this FPGA. Table 1 shows

the amount of resources utilized when implementing the cir-

cuit for four concepts. These constraints allow the Xilinx

VirtexE 2000 to support a maximum of four concepts and

the Xilinx Virtex4 LX200 to support a maximum of 25.

4.3. Analysis

To analyze the effect of limited numerical precision, we sim-

ulated the operation of the circuit on the CMU 20 News-

group Corpus [10]. The CMU corpus is a group of news-

group postings from articles that had been publicly posted

on the Internet. The subset was sanitized by stripping the

“From:” and “Subject:” lines from each file. Next, the files

with less than 100 words were removed. The number of con-

cepts, K was set to 4, 10, and 25. One hundred cluster seeds

were generated for each size.

Type & VI Distance

K Cosine Version Bits Average Std. Deviation

char(0) 8 3.016 0.0914

char(1) 8 2.991 0.0895

4 integer(0) 16 3.016 0.0914

integer(1) 16 2.991 0.0895

double 32 2.940 0.0675

start seed - 4.363 0.0008

char(0) 8 2.957 0.1467

char(1) 8 2.974 0.0881

10 integer(0) 16 2.984 0.0894

integer(1) 16 2.974 0.0881

double 32 2.851 0.0792

start seed - 5.270 0.0015

char(0) 8 3.579 0.1007

char(1) 8 3.573 0.0992

25 integer(0) 16 3.579 0.1010

integer(1) 16 3.574 0.0976

double 32 3.514 0.1005

start seed - 6.164 0.0022

Table 2. Variation of Information distance metric showing

distance to ground truth for K-Means with varying precision

and cosine distance metrics

Table 2 shows the degree to which each algorithm varia-

tion changes the output cluster from a common cluster seed.

This allows the comparison of current hardware and future

hardware against software implementations running on an

Intel 3.60 GHz PC. The software implementations included

a double, integer and char representations of concept vec-

tors. Both the 8-bit character and the 16-bit integer versions

were tested using both versions of the cosine-theta distance

metric. The first distance metric tested is shown in Equation

3. The second is shown in Equation 4. The different versions

had no effect on the double representations due to increased

precision. The 8-bit character representation using Equation

4 is a simulation of the actual hardware.

To compare the different clustering algorithms, Meilǎ’s

Variation of Information [11] metric was used to measure

the distance between two clusterings. This is a log scale

metric approximating the distance between two clusterings.

The distance approximated is the edit distance across the

lattice of possible clusterings for a set of data points. Lower

values indicate closer clusterings. In this case the distance is

between a clustering and the ground truth clustering of the

CMU 20 newsgroups. Seed denotes statistics for the initial

random clusters. These seeds were then run through each of

the K-means versions. They are provided to show a baseline

of how much each clustering improved, and to give an idea

of scale for interpreting these numbers.

Note that in Table 2, for low values of K, such as 4, re-

sulted in the same set of clusterings as the 8-bit character

representation. This occurred despite the slight extra preci-

sion in the integer version. The additional precision double

representations provides results in a clustering that is closer

to ground truth. From this table it is safe to conclude that

while there is some difference between the double represen-

tation and the hardware version of the algorithm, it is a rela-

tively minor difference.

5. CONCLUSION

A high speed, parallel clustering algorithm has been de-

signed and implemented. The resulting circuit has been syn-

thesized for both a Xilinx Virtex4 LX200 and a Xilinx Vir-

texE 2000 FPGA devices. The circuit synthesized for the

Xilinx VirtexE 2000 was tested on the FPX platform. Docu-

ment vectors with 4000-dimensions and 4-bit precision were

clustered with centroids using 8-bit precision. The hardware

circuit implemented on the Xilinx VirtexE 2000 clustered

four concepts at once. The same implementation on a Xil-

inx Virtex4 LX200 can cluster 25 concepts at once. Both im-

plementations make use of the parallel hardware to achieve

higher rates of clustering than can be obtained using soft-

ware algorithms. By scaling values to control numeric preci-

sion, we show that the system can achieve accuracy in clus-

tering comparable to a clustering found when using a full

floating point software implementation. We also show that

by utilizing parallel hardware, the computational speedup

achieved by hardware clustering is substantially greater than

software. Due to the parallel architecture, the speed of the

distance calculation is dependent on the number of docu-

ments but remains constant as the number of concepts in-

creases. Thus, it has been shown that software implemen-

tations running on an Intel 3.60 GHz XEON PC are outper-

formed by a fully pipelined architecture running on a Xilinx

XCV2000E-8 FPGA (with a clock frequency of 80 Mhz) by

a factor of twenty-six. The synthesized hardware on the Xil-

inx Virtex4 with a clock rate of 250 Mhz outperforms the

equivalent software by a factor of 328.

6. REFERENCES

[1] Pattern Classification and Scene Analysis. John Wiley and

Sons, Mar. 1973.

[2] M. Estlick, M. Leeser, J. Theiler, and J. J. Szyman-

ski, “Algorithmic transformations in the implementation

of k- means clustering on reconfigurable hardware,” in

FPGA, 2001, pp. 103–110. [Online]. Available: cite-

seer.ist.psu.edu/estlick01algorithmic.html

[3] M. Leeser, J. Theiler, M. Estlick, N. Kitaryeva, and

J. Szymanski, “Effect of data truncation in an implementation

of pixel clustering on a custom computing machine,” 2000.

[Online]. Available: citeseer.ist.psu.edu/leeser00effect.html

[4] J. Lockwood, S. G. Eick, D. J. Weishar, R. Loui, J. Moscola,

C. Kastner, A. Levine, and M. Attig, “Transformation algo-

rithms for data streams,” in IEEE Aerospace Conference, Big

Sky, Montana, Mar. 2005.

[5] “Hardware accelerated algorithms for semantic processing of

document streams,” in IEEE Aerospace Conference, Big Sky,

Montana, Mar. 2006.

[6] J. W. Lockwood, “An open platform for development of net-

work processing modules in reprogrammable hardware,” in

IEC DesignCon’01, Santa Clara, CA, Jan. 2001, pp. WB–19.

[7] J. Lockwood, J. Turner, and D. Taylor, “Field Programmable

Port Extender (FPX) for Distributed Routing and Queuing,”

in ACM International Symposium on Field Programmable

Gate Arrays (FPGA), Monterey, CA, Feb. 2000, pp. 137–144.

[8] F. Braun, J. Lockwood, and M. Waldvogel, “Layered Pro-

tocol Wrappers for Internet Packet Processing in Reconfig-

urable Hardware,” IEEE Micro, vol. Volume 22, no. Number

3, pp. 66–74, Feb. 2002.

[9] D. Schuehler and J. Lockwood, “A Modular System for

FPGA-based TCP Flow Processing in High-Speed Net-

works,” in 14th International Conference on Field Pro-

grammable Logic and Applications (FPL), Antwerp, Bel-

gium, Aug. 2004, pp. 301–310.

[10] (2005) 20 newsgroups. [Online]. Available:

http://people.csail.mit.edu/jrennie/20Newsgroups/

[11] M. Meilǎ, “Comparing clustering - an axiomatic view,”

in Proceedings of the 22nd International Conference

on Machine Learning, Bonn, Germany, 2005. [Online].

Available: www.stat.washington.edu/mmp/Papers/icml05-

compare-axiom.pdf

