
HAIL: A HARDWARE-ACCELERATED ALGORITHM FOR LANGUAGE IDENTIFICATION

Charles M. Kastner, G. Adam Covington, Andrew A. Levine, John W. Lockwood

Applied Research Laboratory
Washington University in St. Louis

One Brookings Drive, Campus Box 1045
St. Louis, MO 63130-4899 USA

email:{cmk2, gac1, aal1, lockwood}@arl.wustl.edu
http://www.arl.wustl.edu/projects/fpx/reconfig.htm

ABSTRACT

A hardware-accelerated algorithm has been designed to
automatically identify the primary languages used in docu-
ments transferred over the Internet. The algorithm has been
implemented in hardware on the Field programmable port
extender (FPX) platform. This system, referred to as the
Hardware-Accelerated Identification of Languages (HAIL)
project, identifies the primary languages used in content trans-
ferred over Transmission Control Protocol (TCP) / Internet
Protocol (IP) networks that operate at rates exceeding 2.4
Gigabits/second. We demonstrate that this hardware accel-
erated circuit, operating on a Xilinx XCV2000E-8 FPGA,
far outperforms software algorithms running on modern per-
sonal computers while maintaining extremely high levels of
accuracy.

1. INTRODUCTION

Although modern microprocessors continue to increase in
performance, they are not increasing in performance as fast
as the rate of streaming Internet data. As the limits of Moore’s
Law are reached, it is quite possible that the difference in
performance improvements will increase further.

Reconfigurable logic can process network traffic at rates
much faster than what is achievable with microprocessor-
based systems. Systems created from Field Programmable
Gate Arrays (FPGAs) are flexible, as they can be easily mod-
ified to provide new functionality.

This paper presents the design of HAIL, a system imple-
mented in FPGA hardware that classifies documents trav-
elling across a network based on their language. The FPX
implementation of HAIL is capable of identifying up to four

This research was sponsored by the Air Force Research Laboratory,
Air Force Materiel Command, USAF, under Contract Number MDA972-
03-9-0001. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of AFRL or the U.S.
Government.

languages used in the same document, and can be programmed
to recognize up to 255 different languages. Through exper-
imentation, we will show that this implementation of HAIL
is capable of processing data at OC48 rates (2.488 Giga-
bits/second) while maintaining accuracy levels rivaling ex-
isting language classification methods.

1.1. Motivation

As of 2004, nearly two-thirds of the world’s Internet users
speak a language other than English as their primary lan-
guage [1], and nearly one-third of the pages available on the
World Wide Web are written in a language other than Eng-
lish [2]. As the rate that data is transferred over the Internet
increases, the rapid identification of languages becomes a
more difficult problem. A system capable of quickly identi-
fying the primary language or languages used in documents
can be useful as a preprocessor for document classification
and translation services. It can also be used as a mechanism
to winnow documents written in unwanted languages from
a data stream.

1.2. Related Work

Several methods can be used to classify document character-
istics using principles from linguistics and artificial intelli-
gence. Some existing methods of classifying documents use
dictionary-building [3], Markov Models, tri-gram frequency
vectors [4], and/or n-gram based text categorization [5, 6].
While these methods are capable of achieving high degrees
of accuracy, most require floating-point mathematics, large
amounts of memory, and/or generous amounts of processing
time.

Commercial software applications have been developed
that can identify a document’s language. One such tool is the
Lextek Language Identifier [7], which can categorize a doc-
ument into one of 260 different languages. Although Lex-
tek is useful, it is computationally intensive, performs all

0-7803-9362-7/05/$20.00 ©2005 IEEE 499

computations in software using a microprocessor, and can-
not process data at the rates found on high-speed networks.

2. ALGORITHM

Some language-identification algorithms, including the al-
gorithm implemented in HAIL, use n-grams to determine
the language of a document. N-grams are sequential pat-
terns of exactly n characters that are found in written docu-
ments. By using n-grams as indicators of language, the pri-
mary language or languages of a document can be reliably
determined. HAIL could use any n-gram length, although
experiments have shown that n-grams of length three (tri-
grams) and length four (tetra-grams) provide the most accu-
rate results.

Prior to processing data with HAIL, the target system
must be trained with information on various languages. This
is accomplished by training on a set of documents in the lan-
guages of interest; if an n-gram appears significantly more
frequently in documents of one language than any other,
it is associated with that language. After training has es-
tablished which n-grams best correspond to particular lan-
guages, memory modules on the hardware platform imple-
menting HAIL must be programmed. This is performed by
using a hash to map each n-gram to a particular memory
location. The memory location that corresponds to a partic-
ular n-gram is labelled with the associated language. Once
data processing begins, n-grams are sampled from the data
stream and used as addresses into memory to discern the
language associated with the n-gram.

2.1. N-gram Extraction

N-grams can be subsampled if memory bandwidth is small
compared to that of the incoming data link. The subsam-
pling scheme used by HAIL ignores n-grams that cross word
boundaries, and extracts only those n-grams that begin on
certain letter offsets within a word. For instance, if one
memory access can be made for every two characters that
arrive in the system, the n-grams that begin on a word’s first,
third, fifth, etc. letters would be extracted. Likewise, if one
memory access could be made for every three characters that
arrive in the system, the n-grams that begin on each word’s
first, fourth, seventh, etc. letters would be extracted. This
subsampling scheme causes a given word to be processed in
the same manner whenever it appears.

When working with a single character set, several other
optimizations can be made to reduce the amount of mem-
ory needed to store n-grams. First, case conversion can be
performed; in addition to reducing the amount of required
memory, this practice allows n-grams to be identified con-
sistently, regardless of the capitalization of individual letters.
The amount of memory required can be reduced further by

mapping accented characters (such as ñ and é) to their non-
accented forms (n and e). By using these two methods, the
Latin alphabet can be compressed into twenty-seven char-
acters (twenty-six letters plus a character representing a de-
limiter) for use in HAIL. This allows each character to be
represented with five bits.

As an example of HAIL’s operation, consider an im-
plementation in which n-grams of length four (tetra-grams)
are used, one memory access can be performed for every
two characters that enter the system, and case conversion
and accent mapping are performed. If the Spanish phrase
Hablamos Español were passed into the system, HAIL would
extract the tetra-grams HABL, BLAM, AMOS, ESPA, and
PANO. From a statistical analysis, we found that the tetra-
grams HABL, AMOS, and PANO are strong indicators of the
Spanish language, while BLAM is a strong indicator of the
English language. Since the count of Spanish tetra-grams
exceeds that of English tetra-grams, this phrase could be cor-
rectly classified as Spanish. We will show in Section 4 that
HAIL provides a high level of accuracy for large numbers
of languages and for documents of many sizes.

2.2. Counting

As mentioned in Section 1, our implementation of HAIL
can tag packets and flows with up to four language IDs,
while drawing from a pool of up to 255 different languages.
To efficiently track which four of the 255 languages appear
in the document, HAIL uses a trend register. HAIL im-
plements four on-chip counters for language identification.
The trend register determines which languages should uti-
lize these counters.

This trend register tracks successive n-grams from the
same language. If several such n-grams arrive (three suc-
cessive n-grams were found to be the optimal number), the
corresponding language is granted use of one of the four lan-
guage counters. Once a language is associated with one of
these counters, any occurrence of a tetra-gram in that lan-
guage increments the counter. Thus, up to four languages
that establish trends within a given document are represented.

3. IMPLEMENTATION

HAIL has been implemented on the Field-programmable
Port Extender (FPX), an open hardware platform that allows
circuits to be rapidly prototyped and implemented in recon-
figurable hardware [8]. The FPX is used extensively for the
fast processing of streaming network data.

Circuits developed for the FPX consist of VHDL speci-
fied modules that include a common infrastructure as well as
user-defined logic that performs customized content process-
ing [9]. FPX circuits exchange data over the network using
a set of layered Internet Protocol wrappers [10]. The Trans-
mission Control Protocol / Internet Protocol wrappers allow

500

Fig. 1. The FPX platform used to implement HAIL

the FPX to directly process streaming TCP/IP network traf-
fic flows in hardware [11].

Once an application has been implemented for use on the
FPX, a bitfile is uploaded to the hardware over a network.
A Xilinx XCV2000E-8 FPGA implements the user-defined
logic on the FPX. A photograph of the FPX system is shown
in Fig. 1. The HAIL module runs on the large FPGA in the
middle of the FPX circuit board.

Information enters the HAIL system as IP packets trans-
mitted across a network link. Documents sent across the
link are split into one or more packets, which can arrive in
the system interleaved with packets from other documents.
Packets entering the system first pass through an FPX mod-
ule that performs TCP/IP stream assembly and protocol an-
notation [11]. This module maintains the state of each active
network traffic flow in off-chip SDRAM, annotates packets
with flow state information, and ensures that data entering
the HAIL module is properly ordered.

This implementation of HAIL also uses SDRAM to main-
tain TCP flow context information. Each time that the sys-
tem processes a packet of a TCP flow that has not yet termi-
nated, intermediary language IDs and counters are stored in
off-chip memory for retrieval when the next packet from the
flow arrives.

3.1. Engineering Trade-offs

The FPX is designed to accept four bytes of data per clock
cycle. When processing streaming data on a high-speed net-
work link, it is assumed that new data can arrive on every
clock cycle. In order to reliably process all n-grams that ap-
pear at every byte offset in a document, the system would
need to be capable of performing four memory lookups per
cycle.

The Xilinx XCV2000E-8 FPGA on the FPX contains

160 small, single-cycle latency, dual-port memories called
BlockRAMs. Each BlockRAM contains four kilobits of stor-
age, providing a total of 640 kilobits of on-chip RAM. Al-
though BlockRAMs have been used in other FPX circuits to
efficiently perform string matching operations [12, 13, 14],
HAIL must store more strings than could fit into Block-
RAM.

The FPX platform is also equipped with a pair of two
Megabyte, zero-bus turnaround (ZBT) SRAMs. Each of
these memory devices can perform a single read or write
operation during each clock cycle. By configuring the two
SRAMs with identical dictionaries of n-grams, two parallel
lookups can be performed per clock cycle.

Since two n-gram lookups can be performed per clock
cycle, and data enters the FPX at the rate of four bytes per
clock cycle, only half of the n-grams in words of length
greater than n can be looked up.

Using the scheme described in section 2.1, tetra-grams
(n-grams with a length of four) can represent each character
in the Latin alphabet with five bits. Thus, a tetra-gram can be
represented with twenty bits; since each SRAM on the FPX
is two megabytes in size, every possible tetra-gram could
fit into SRAM. Furthermore, we experimentally determined
that tetra-grams performed approximately 1.5% better than
n-grams with a length of three, and significantly better than
n-grams of other lengths.

3.2. Architecture

The architecture of the HAIL system as implemented in the
FPX is shown in Fig. 2. It consists of eleven discrete com-
ponents, which are pipelined to provide high throughput. A
brief description of major components appears below.

3.2.1. Tetra-gram Generator

This module processes bytes from the TCP data stream that
represent letters in the extended ASCII character set. It con-
verts all letters to their uppercase unaccented form, then
compresses the letters into a five-bit format. The stream of
letters is inserted into a shift register, and the circuit extracts
tetra-grams that do not cross word boundaries and that begin
on odd-numbered character offsets within a word.

3.2.2. SRAM Reader

This module uses tetra-grams as addresses into the SRAM
dictionaries. Up to two lookups into the dictionaries are per-
formed each clock cycle; the data returned from each lookup
is an eight-bit language identifier, which is then passed to the
count and score module described next.

501

Fig. 2. Block diagram of HAIL’s basic architecture

3.2.3. Count and Score

This module uses the method described in Section 2.2 to
track the trends of languages seen in tetra-grams. After
processing the contents of a packet, the module annotates
the packet data with its primary languages and passes the
data to the TCP reserializer. Once the content of an entire
TCP flow is analyzed, the module transmits information re-
garding the flow’s language or languages to the report gen-
erator described next.

3.2.4. Report Generator

HAIL records the source and destination IP addresses, source
and destination ports, and the counters of the four primary
languages used in a TCP flow. Upon termination of a flow,
the report generator formats this data into a UDP packet and
transmits it to a PC.

3.2.5. SRAM Programmer

Communication between the FPX and external devices is
performed via control packets transmitted over an IP net-
work. In order to program dictionaries into SRAM and to set
other options within HAIL, an external computer transmits
formatted UDP/IP packets to the FPX. This module decodes
the commands contained in the UDP packets and uses them
to program the SRAM dictionaries.

4. EXPERIMENTS

We performed several experiments in which the FPX imple-
mentation of HAIL was compared to three other algorithms.
A set of documents written in extended ASCII was obtained
from the LDC corpora. This set contained documents writ-
ten in Arabic, English [15], Dutch [16], French [17], Ger-
man [18], Italian [19], Norwegian [20], and Spanish [21].

For the experiments, we measured the accuracy of the
algorithms as a function of the amount of training data. In
each experiment, the number of words used for training was
varied from five hundred to five thousand words from each
language of interest. The training documents were chosen at
random from the set of documents in each language.

Test sets in each experiment consisted of one hundred
documents in each of the eight languages; testing data was
chosen at random from the set of documents not used in
training. Data presented is the average over ten runs of test-
ing and training.

The four algorithms used in the experiments are outlined
below.

HAIL: The algorithm outlined in this paper.
Dictionary: All words found in the training data were

associated with the respective language. Testing data was
labelled as the language with the highest number of words
in the document.

Tetragrams: All sets of four letters that do not cross
word boundaries were extracted from the training data. The
probability that a tetra-gram identified a particular language
was computed for all tetra-grams across all languages. A

502

Fig. 3. Experimental results for language identification schemes using documents of one hundred words each.

testing document was scored based on the sum of probabili-
ties of the tetra-grams it contained.

Damashek: This is an implementation of Damashek’s
topic and language identification algorithm [5]. Training
was performed on n-grams of various lengths throughout a
document, and n-grams were given scores based on their
contribution to each language. Scores from the n-grams
found in testing documents were used to compute the prob-
ability that a document is written in a specific language.

Experiments were run in which the average document
size was varied from one hundred words to one thousand
words. For document sizes of five hundred words or more,
all four algorithms in consideration provided accuracy greater
than 99 percent for training sets as small as one thousand
words.

For testing document sizes of one hundred words, the
algorithm used in HAIL was over 94 percent accurate for
training sets of one thousand words. However, when the
number of training words grew to five thousand, HAIL’s ac-
curacy was nearly identical to that of the other algorithms.
The results of this experiment are shown in Fig. 3.

4.1. Performance and Device Utilization

The circuit implementing HAIL was placed and routed at 90
MHz for the Xilinx XCV2000E-8 found on the FPX board.
As detailed in Table 1, HAIL requires approximately one-
quarter of the logic slices on the Xilinx XCV2000E-8. This
figure also includes infrastructure for memory controllers

and modules for communication between HAIL and exter-
nal devices.

The circuit implementing HAIL requires an overhead of
30 clock cycles per packet, during which data for the incom-
ing packet’s TCP flow is retrieved from SDRAM. A typical
TCP/IP packet contains 40 bytes of header data. Data en-
ters the FPX four bytes at a time, so the 40 bytes of packet
overhead consume 10 clock cycles of processing time. In
total, each packet that enters the FPX implementation of
HAIL utilizes 40 clock cycles to retrieve flow context and
to process the header.

For 1500 byte packets (the MTU on most Internet links),
HAIL can process 324 Megabytes (2.5 Gigabits) of payload
data per second, a rate that exceeds the maximum through-
put of a fully-utilized OC48 link.

For comparison, a program was written using an appli-
cation programming interface (API) provided by Lextek [7],
a company that provides a language identification tool. The
API is accompanied by files that the provided functions use
to identify the languages used in a document. The API al-
lows the programmer to utilize multiple language identifi-
cation files; however, the tool’s throughput decreases as the
number of language identification files increases.

The program was executed on a PC containing an Athlon
64 3200+ processor and one gigabyte of PC2100 DDR SDRAM.
The number of language identification files used was varied
from one to ten, and the software was run on 4.5 Megabytes
of text. Measurements were taken only after the data had
been loaded into memory.

503

Table 1. Device utilization for HAIL
XCV2000E-8 Utilization

Resources Utilization Percentage

Slices 5262 out of 19200 27%
4-input LUTS 7157 out of 38400 14%

Flip Flops 5379 out of 38400 18%
Block RAMs 88 out of 160 55%

The software utilizing Lextek had an average through-
put of 3.8 Megabytes (30.4 Megabits) per second when only
one language identification file was open. As the number
of these files was increased to ten, performance decreased
linearly to 1.2 Megabytes (9.6 Megabits) per second. For
1500-byte TCP/IP packets, HAIL is 85 to 270 times faster
(depending on the number of language modules loaded into
Lextek). Furthermore, HAIL’s throughput does not change
when more languages are programmed into it.

5. CONCLUSION

HAIL, a hardware-accelerated algorithm that identifies the
language used in documents sent over the Internet, has been
implemented and tested on the FPX platform. This imple-
mentation of HAIL processes content in a TCP/IP network
traffic flow and tracks the four most-used languages from a
set of up to 255 languages. With only a few thousand words
of training data, HAIL achieves accuracy exceeding 99 per-
cent for documents as small as one hundred words. As doc-
ument size increases, HAIL is capable of identifying docu-
ment languages over 99.95 percent of the time. HAIL proc-
esses network payload data at up to 2.5 Gigabits per second,
a rate much higher than that of algorithms designed for exe-
cution in software. The circuit uses 14% of the lookup tables
and 55% of the on-chip Block RAMs in Virtex XCV2000E-
8 FPGA on the FPX platform. The additional logic can be
used for future expansions, including support for processing
additional character sets.

6. REFERENCES

[1] Global Reach, “Global Internet Statistics By Language,”
Online: http://www.glreach.com/globstats-
/index.php3, Dec. 2004.

[2] ——, “Global Internet Statistics: Sources and References,”
Online: http://www.glreach.com/globstats-
/refs.php3, Dec. 2004.

[3] R. Paulsen and M. Martino, “Word Counting Natural Lan-
guage Determination,” U.S. Patent 6,704,698, 1996.

[4] J. Schmitt, “Trigram-Based Method of Language Identifica-
tion,” U.S. Patent 5,062,143, 1990.

[5] M. Damashek, “Method of Retrieving Documents that Con-
cern the Same Topic,” U.S. Patent 5,418,951, 1994.

[6] R. Shaner, “Method of identifying data type and locating in a
file,” U.S. Patent 5,991,714, 1998.

[7] Lextek International, “Lextek Language Identifier,” On-
line: http://www.languageidentifier.com, Dec.
2004.

[8] J. W. Lockwood, “An open platform for development of net-
work processing modules in reprogrammable hardware,” in
IEC DesignCon’01, Santa Clara, CA, Jan. 2001, pp. WB–19.

[9] J. Lockwood, J. Turner, and D. Taylor, “Field Programmable
Port Extender (FPX) for Distributed Routing and Queuing,”
in ACM International Symposium on Field Programmable
Gate Arrays (FPGA).

[10] F. Braun, J. Lockwood, and M. Waldvogel, “Layered Pro-
tocol Wrappers for Internet Packet Processing in Reconfig-
urable Hardware,” IEEE Micro, vol. Volume 22, no. Number
3, pp. 66–74, Feb. 2002.

[11] D. Schuehler and J. Lockwood, “A Modular System for
FPGA-based TCP Flow Processing in High-Speed Net-
works,” in 14th International Conference on Field Program-
mable Logic and Applications (FPL), Antwerp, Belgium,
Aug. 2004, pp. 301–310.

[12] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lock-
wood, “Deep Packet Inspection Using Parallel Bloom Fil-
ters,” in 11th Annual IEEE Symposium on High Performance
Interconnects (HotI), Stanford, CA, Aug. 2003, pp. 44–51.

[13] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest
Prefix Matching Using Bloom Filters,” in ACM Special Inter-
est Group on Data Communications (SIGCOMM), Karlsruhe,
Germany, Aug. 2003.

[14] M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementa-
tion Results of Bloom Filters for String Matching,” in IEEE
Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), Napa, CA, Apr. 2004.

[15] “Arabic English Parallel News Part 1,” Philadelphia: Linguis-
tic Data Consortium, 2005.

[16] Groningen and The Institute of Dutch Lexicology, “Dutch
ECI Multilingual Text,” Philadelphia: Linguistic Data Con-
sortium, 2005.

[17] Le Monde, “French ECI Multilingual Text,” Philadelphia:
Linguistic Data Consortium, 2005.

[18] University of Munster, Frankfurter Rundschau, “German ECI
Multilingual Text,” Philadelphia: Linguistic Data Consor-
tium, 2005.

[19] A. Wilkin and E. Burr, “Italian ECI Multilingual Text,”
Philadelphia: Linguistic Data Consortium, 2005.

[20] Bergen, “Norwegian ECI Multilingual Text,” Philadelphia:
Linguistic Data Consortium, 2005.

[21] Moreno, “Spanish ECI Multilingual Text,” Philadelphia: Lin-
guistic Data Consortium, 2005.

[22] Aggelos Bletsas, “Physical limitations on the expansion
of Internet,” Online: http://web.media.mit.edu-
/∼aggelos/861.html, 1999.

504

