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Abstract—In this paper, we consider tracking targets using

multiple distributed sensor platforms. Rather than sending the

tracks to a central location, such as a command and control

center where information is exchanged between platforms,

we consider a distributed solution. While fixed position sin-

gle sensor tracking of a single target is considered straightfor-

ward, multiple sensors on the different platforms with over-

lapping coverage is complex because duplicate tracking data

is generated for the same targets. Redundant information gen-

erates network messages that in turn overload the network

performance, and may result in traffic congestion on limited

avionic bandwidth wireless links that prevents time critical

data from reaching its destination. In our approach, we iden-

tify similar tracking data to be distributed and send only one

copy of the message.

In order to identify redundant data, we use a clustering al-

gorithm to evaluate the large volumes of sensor information.

Distributed multiple target tracking (MTT) combines track

observations from different sensors to identify the same tar-

get. Massive computation and communication is required for

distributed real time MTT. In this paper, the K-means cluster-

ing algorithm is used to aggregate redundant tracks. Software

simulations using Matlab and emulation tests using Emulab

show significant improvement of the information quality by

using clustering. An MTT system was prototyped with FPGA

hardware to cluster high volumes of data with low latency in

real time at the network layer.
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1. INTRODUCTION

Commercial and military aerospace use multiple sensors on

a variety of platforms today to track targets. Sensor data is

partitioned into sets of observations, or tracks, that provide

a time and distance history of target location. Track data is

then processed to identify the number of targets and identify

key metrics including velocity, future predicted position, and

target type. Avionic networks interconnect numerous sensors

that generate a large volume of data. Communication band-

width is a valuable resource that must be used wisely to track

targets effectively. Multiple Target Tracking (MTT) must lo-

cate and identify targets quickly.

Existing MTT detection, classification, and tracking algo-

rithms work well on a single platform. Centralized data fu-

sion collects data from multiple sensors. Rather than imple-

ment another centralized algorithm, we consider techniques

for distributed algorithms to regulate communication for dis-

tributed track fusion.

Multiple platform sensor MTT systems need to gate and cor-

relate a target’s parameters (position, range rate, velocity, and

acceleration) [1]. Our approach uses clustering to associate

MTT data for distributed tracking based on scenarios such

as the one depicted in Figure 1. We evaluate the cost and

benefit of distributing track data between nodes with sensors

for improving situational assessment (SA). Track data (ob-

servations) are distributed using shared bandwidth between

platforms to improve SA. Clustering improves SA by pro-

viding improved data association. Clustering results in pri-

oritization of network data, conservation of bandwidth and

lowering the track fusion latency. Traditional methods to dis-

tribute track observations often load the existing bandwidth

beyond the channel capacity resulting in information latency

and loss. Figure 1 illustrates that multiple sensors report their
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observations of every target within range (depicted as circles).

Our scenario has multiple targets moving in defined patterns

within range of multiple sensors to assess scalability.
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Figure 1. Targets are simultaneously tracked by multiple

sensors

Real time SA requires improved dynamic exchange of sensor

observations which often generates duplicate data for targets

located in overlapping coverage which cause network over-

load. It is critical to select only the best information to send

over the limited bandwidth. Lossless compression techniques

are not effective in fitting all the information within the lim-

ited bandwidth for large scale systems. Clustering intelli-

gently groups track messages autonomously in real-time to

use available bandwidth with the highest priority track data.

Our goal is to reduce the number of tracks exchanged while

retaining information quality. The effectiveness of using our

clustering algorithm operating in a distributed environment

was proven using large-scale Emulab experiments.

2. CLUSTERING AND CLASSIFICATION

Clustering algorithms help to group data at discrete update

points. The measurement of the data to be clustered is de-

fined as the distance metric. We evaluated Manhattan, Eu-

clidian, and Chebyshev distance algorithms for use with the

K-means clustering algorithm. Our distributed MTT cluster-

ing algorithm uses Manhattan distance with a modified K-

means algorithm to find centroids of the clusters of tracking

data.

Classification of data identifies which data is similar when

prior information about a centroid is known. A centroid is

the representation of the target’s predicted position based on

the density of targets. The centroid is adjusted at discrete

times to predict the target location. Track data is sorted and

clustered for each target. Target data is stored in a table as

shown in Figure 2 as the track state for clustering. Observa-

tions received at different times (t1,t2, t3,...) are compared to

the projected centroid of each track or cluster stored. Veloc-

ity and position data is used to associate the new observations

received with the appropriate track or clusters stored.

Our MTT track clustering algorithm calculates the distances

between tracks and projected target positions associated with

the tracks (centroid). The algorithm identifies whether the in-

coming track maps to an existing centroid then either updates

the centroid or creates a new cluster for the incoming track.

Finally, the algorithm then determines if the track should be

used only at a local node or sent to other nodes.

The traditional K means algorithm requires specifying the

number of clusters. Since we never know exactly the num-

ber of targets being tracked, applying traditional clustering

algorithms is impossible. We evaluated multiple clustering

and distance algorithms for improved track data association

and bandwidth matching using Matlab. The thresholds were

adjusted to match the MTT track gating. The results provided

clustering design and development constraints used in simu-

lation, emulation and hardware evaluation.

To minimize the latency required to cluster data and to max-

imize throughput of the target tracking algorithm we imple-

mented a clustering algorithm in Field Programmable Gate

Array (FPGA) technology to parallelize the processing. The

main three hardware modules that were prototyped include:

Track Cluster, Time Compare, and Update. The Track Clus-

ter module calculates the Euclidian distance and maintains

a list of current clusters/tracks. The Time Compare mod-

ule determines the priority and whether to send or aggregate

the data. The Update module computes the projection of the

target (centroid) for clustering the track data and passes the

projection of the Track Cluster module to be stored. The

prototype modules are demonstrated using an open platform

called the NetFPGA. The NetFPGA processes real time MTT

data as it is received in real time over a network. Hardware

achieved a significant improvement over traditional software

processing methods. Our parallel hardware design can per-

form 4 simultaneous distance metric measurements with up

to 100 simultaneous tracks operating at a clock speed of 125

MHz. The total time required for distance calculations, as-

signment determination, and updates requires 0.904 µs for

each incoming track which creates a real time throughput of

approximately 1.1 million packets per second.

3. RELATED WORK

Target tracking includes data association and track filtering.

Data association receives observations and must assign them

to existing tracks. Correct association is difficult because the

targets may be closely spaced together or located between

tracks. Sensor measurements of the targets may be impre-

cise due to measurement resolution, noise, and other error

sources. Many data association algorithms have been pre-

sented [2] [3] for group clustering and target clustering but

few leverage recent advancements in data clustering tech-
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Figure 2. Tracks mapped into L dimensional vectors are clustered into groups of current tracks

nology for improving bandwidth usage. Older methods use

Nearest Neighbor (NN) algorithms that make decisions as

the data arrives while newer methods delay decisions by stor-

ing the data used in Multiple Hypothesis Tracking (MHT).

Our clustering methods use NN algorithms for data asso-

ciation. Modern radar systems often use the Suboptimal

Nearest Neighbor (SNN) algorithm while the Global Nearest

Neighbor (GNN) has recently been proposed. Often multiple

closely spaced aircraft are grouped together and mistaken for

a single target. The GNN approach has demonstrated very re-

liable results for modern radar systems when contrasted with

SNN.

Clustering has been used in two ways for tracking in the lit-

erature. Target clustering groups similar data elements or

observations together to form a track (usually without prior

knowledge). Group clustering typically computes a location

and velocity centroid of a large number of closely spaced tar-

gets moving in the same direction in order to reduce the track

data transferred, system loading, and miscorrelation. Target

clustering is the application we are addressing.

Target clustering automates the target track gating and distri-

bution of tracks. Current radar monopulse tracking methods

have trouble handling multiple unresolved targets within the

beamwidth which creates distortion by averaging the target

measurements into a group centroid. Proper setup of thresh-

olds improves correct classification and sorting of data to

reduce miscorrelation. Clustering algorithms use similarity

measurements known as the ”distance.” The distance is com-

puted from observations to centroids. Normally, centroids

represent the average of grouped data elements however we

project the last observation to the temporal-space for the dis-

crete time interval needed to match the bandwidth available.

Clustering applied to distributed fusion using avionic net-

works is a novel application. Image and text based clustering

was the basis which formed our current approach. The two

main forms of clustering are agglomerative (bottom-up) and

divisive (top-down). Each approach utilizes a distance metric

that measures the difference between two elements. Agglom-

erative clustering treats every data element as a separate clus-

ter and merges clusters if they exhibit similar distance met-

rics. Divisive clustering starts with all data elements in the

same cluster and partitions them into different clusters based

on the distance metric. Both forms of clustering are described

in [4] as it applies to hierarchical document clustering using

the K-means algorithm.

The original K-means algorithm was described by Duba and

Hart [5] and has been used by Estlick et al. [6] and Lesser et

al. [7] to implement a hardware approach of K-means cluster-

ing for hypersectral images. They [7] compared three differ-

ent distance metrics that included: Manhattan, Euclidean, and

Max distances. They determined that the Manhattan distance

would be the best fit for their hardware. Covington et al. [8]

showed the implementation of K-means mapped into integer

arithmetic. They utilized a Cosine Theta distance metric since

this metric (also known as the spherical distance) provides a

better distance in high dimensional sparse data.

Spectral Clustering is another algorithm that has been used

to cluster data vectors. This algorithm provides an effective

method to cluster sparse high dimensional data sets. A spec-

tral clustering algorithm described by Ng et. al. [9] calcu-

lates the top features or dimensions to cluster by calculating

and selecting the top eigenvectors to cluster. The heart of the

algorithm described used K-means to cluster the top eigen-

vectors.

4. TRACK CLUSTERING ALGORITHM

Most clustering algorithms operate on a fixed set of data and

are commonly iterative. Every cycle a data element is se-

lected and is moved to the cluster that is determined to be the

best fit by the distance metric. The clustering algorithm used

to cluster track data differs from these cyclical algorithms.

Since the clusters represent known tracks that could move,

the incoming track data can only be clustered once. The track

clustering also utilizes a cluster threshold to determine if a

track is close enough to be included in a cluster. This is an

important addition to the algorithm. The cluster threshold al-

lows the creation of new clusters when tracks are significantly

distant from existing clusters.

The algorithm for track clustering operates as follows:
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1. Calculate distances from incoming observation to cen-

troids.

2. Determine if there is a centroid Cmin close enough to have

a distance below the cluster threshold.

(a) If Cmin exists, assign track ~t to centroid and update the

position of Cmin based on the velocity.

(b) If Cmin does not exist, add the track ~t as a new track.

Although there are numerous distance metrics that can be

used for clustering, this work utilizes the Manhattan distance

metric.

Manhattan Distance

The Manhattan distance, or city block distance, provides the

absolute distance between two data elements. In a two di-

mensional grid the calculation totals the absolute value of the

difference between the vector elements. Given the example

shown in Figure 3, the Manhattan distance is nine.
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Figure 3. Manhattan Distance calculation in two dimen-

sions:

|Ax - Bx| + |Ay - By| = |4 - 7| + |3 - 9| = 3 + 6 = 9

ManhattanDistance =
∑

i∈0..N−1

| ~Ai − ~Bi| (1)

5. ANALYSIS

The major challenge faced by distributed multi-target track

(MTT) fusion is choosing the right information to send at

the right time over severely limited bandwidth links to con-

struct a scalable unified picture that will enhance situational

awareness (SA). MTT employs one or more sensors, together

with computing resources, to interpret the environment based

on a series of measurements. MTT partitions sets of mea-

surements (observations) or tracks for object representations

in space and time. Target prioritization (missiles, aircraft,

trucks, ships) is critical to correctly assess the environment

in real time. This research creates a more intelligent interface

between the application (fusion) and the network (distribution

of observations) to reduce latency while increasing the value

of information transferred. Fundamentally we reduce latency

and preserve bandwidth by adding intelligence at the network

layer that is able to make real time decisions.

The future SA technology trends use distributed fusion to in-

crease track accuracy and reduce latency in acquiring a com-

mon operating picture. Today centralized fusion is usually

accomplished at the application level and relies on the net-

work to transfer all observations. The fusion application has

very limited visibility into the network layer. Operating at

the network layer more effectively is critical to distributing

the many observations required for centralized fusion or dis-

tributed fusion. Distributed fusion runs multiple copies of the

fusion algorithms at local nodes (near the edge) of the net-

work and relies on efficient transfer of the right data.

The problem is difficult due to the many constraints such as

unreliable wireless transport, limited processing power at the

edge, and the use of multiple legacy wireless communication

links with low throughput. There are many solutions devised

to overcome unreliable transport in wireless networks how-

ever the associated overhead and latency limit their effective-

ness. Limited edge processing makes running the fusion algo-

rithms at distributed nodes difficult. Typical avionic wireless

links offer less than 100 Kbps while the offered load for large

distributed fusion is 100 Mbps or more. Large packet latency

or out of sequence packets often result in information deletion

by the fusion algorithms at the application layer. Recogni-

tion of the inappropriate transfer of data will save bandwidth

and result in less processing cycles wasted. We hypothesize

that better use of network resources can help to improve dis-

tributed fusion performance.

Theoretically, each distributed node uses an identical fusion

engine to evaluate every track observation which should gen-

erate exactly the same SA picture. We realize that it is impos-

sible for every node to be sent and process every track obser-

vation to develop exactly the same operation picture. Reduc-

tion of data and preservation of the required processing cycles

is critical to developing a realistic solution for improving SA.

Two main types of distributed track fusion messages are used

to initialize and update current tracks. There is a time dur-

ing initialization where multiple distributed nodes have sep-

arate identifiers for new tracks detected however the goal is

to quickly converge to a unique identifier used by all sen-

sors on different platforms tracking the same target. Each

track should be assigned a unique identification (ID) soon af-

ter initialization occurs. Our solution does not depend on a

unique identifier assigned but will use it if provided. Dis-

tributed track observations also contain position, velocity and

relative time of the measurement information.

There are scalability problems with distributing every track

observation to all nodes. Recently the MTT application tries

to perform network layer functions at the application layer.

This approach creates real time performance issues, demands
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significant increases in processing, presents optimal band-

width usage challenges, limits key access to network man-

agement parameters, and adds latency due to large queues

buffering network packets. Our novel research evaluates us-

ing clustering to reduce or eliminate these problems.

Traditional information theory was evaluated to help map the

track observations to queuing decisions for more efficient

bandwidth allocation. In our approach, the goal is to iden-

tify similar tracking data to be distributed and send only one

copy of the message. Shannon [10] discussed ”GEOMET-

RICAL REPRESENTATION OF MESSAGES” to represent

messages in multiple dimensions more efficiently. Eliminat-

ing message redundancy can happen by simply recognizing

different information in the same message that is not neces-

sary for recreation of the information being transferred. Shan-

non proposes improved mapping of higher levels to lower

levels of communication for more efficient transfers. Intel-

ligent reconstruction by the source and receiver can provide

the improved mapping by eliminating messages or informa-

tion normally sent. In the case of distributed tracks, the fusion

algorithms are insensitive to a certain amount of variation in

distance, known as tracking error [1]. Mean and variance of

the tracking error are used for calculating the dispersion ma-

trix (variance and covariances of x,y positions of members)

for a group of track observations. MTT uses variations of the

dispersion matrix to identify the associated tracks (estimate

the position of target). We evaluate the impact of improve-

ments to the lower level queuing using higher level geometric

methods, similar to the example provided by Shannon [10].

We evaluated changes relative to the true track path or shape

generated relative to the track constructed from the data sent

over bandwidth limited links. The challenge is to provide the

information required for accurate tracking while selectively

eliminating redundant or unnecessary information to match

the bandwidth capacity available. Our solution adds intelli-

gence between the source and receiver to make difficult real

time decisions at the network level to increase the value of

information and improve network quality of service (QoS).

Messages differing by only a slight variation of measure-

ment (to a limited extent) represent nearly the same infor-

mation and offer an opportunity to eliminate redundant in-

formation. This may also reduce the number of dimensions

in the current message space. Track observations which are

considered equivalent by the destinations (receivers of track

observations) can be grouped together and treated as one

point or a reduced set of key observations. Equivalency is

evaluated by assessing the relative closeness of the observa-

tion to the projected centroid. We propose that this group-

ing method requires fewer messages to specify one of these

equivalence classes defined as we cluster the track observa-

tions rather than sending sequential non-prioritized observa-

tions. For example, we use a two-dimensional space to in-

dicate the value of this method by comparing normal (tail

drop) network queuing with clustering. Simulated targets are

controlled and fly in a square pattern of known dimension to

simplify assessing any perturbation observed. The deviation

in target tracking shape (represented by the series of observa-

tions) are quantified relative to area differences of the shape.

We compare the known area generated by the simulation (tar-

get flying in a square) to the area constructed based on the

limited observations sent.

Our clustering approach for distributed fusion uses both spa-

cial and temporal methods to evaluate equivalence. We ad-

just clustering thresholds to prioritize the information sent to

other nodes. Distance methods, such as Manhattan or Eu-

clidean distance, compare the distance from the centroid to

the observations. If all observations are evenly spaced on a

circle around the centroid, they can be regarded as equiva-

lent, and theoretically can be reduced to a one-dimensional

space or point. We extend this specific example representing

points (track observations) within the circle as key messages

to be sent at higher priority. The radius of this circle is defined

by the clustering threshold. We preserve state by storing each

target’s most recent track observation sent for centroid pro-

jection.

The spacial method described above clusters based on dis-

tance. We first project the centroid using information shown

in Figure 2 and the following equation:

Centroid = stored(X,Y )+(timeinc)∗(currentvelocity)
(2)

Second, the distance from the observation to the projected

centroid is calculated. Third, if the distance is less than the

clustering threshold, the observation is sent. Currently the

clustering threshold is set based on empirical data however

dynamic methods are planned for future implementations.

Temporal methods simply evaluate velocity to prioritize the

observations and then select the correct update rates. The

three priority levels are high (e.g. missiles traveling at Mach 2

or higher), medium (e.g. aircraft traveling between Mach and

Mach 2) and low (e.g. trucks, ships traveling below Mach

1). We plan to use an adaptive weighting factor that will

be adjusted relative to the proximity, target turn radius, and

threat level represented by the target. Based on experience,

the update rates for the high priority is set at 6 hertz, medium

priority is set to 4 hertz and low priority is set to 2 hertz.

Our temporal algorithm compares the relative system time

associated with last observations sent to decide whether the

current observation should be sent. The update rate is var-

ied based on the priority level of the target. The observa-

tion won’t be sent unless the update rate set for the target has

been exceeded, even if the observation is below the clustering

threshold (close to the centroid). Currently the spacial and

temporal algorithms operate independently but are sequen-

tially dependent, as indicated.

We evaluated a severely constrained bursty link with a small

tail drop queue (traditional network QoS) contrasted with a

zero length queue (clustering) to assess effectiveness. Queue
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length helps to absorb variations in link bit rate but adds la-

tency. Clustering adjusts the sending bit rate by using FPGA

hardware to make real time decisions resulting in only very

small hardware latency. Figure 4 below shows projections

based on Matlab simulations of the improved performance of-

fered by intelligent clustering methods contrasted with tradi-

tional queuing methods using graphical evaluation techniques

described above. This illustrates that effective operation may

occur with clustering at much lower bandwidths than tradi-

tional methods. Figure 5 illustrates a modified target tracking

pattern difference due to loss of critical data. The area repre-

sented by the reduced data set has reduced area as expected.

Significant area reductions occur depending on the random-

ness of the queue, burstyness of the data, and redundancy of

the target pattern.
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The queuing solutions today are widely used. Our Matlab

simulations take into account the bursty nature of wireless

links and the loss of critical updates for short periods of time

as noted in Figure 5. The ideal target pattern shown as a

square (true representation) is represented as a distorted par-

allelogram to illustrate the change in area. The representation

remains distorted until a large percentage of the bandwidth

required is available as illustrated in Figure 4. The clustering

solution is shown to provide increased information content

with reduced bandwidth and latency.

6. EXPERIMENTATION

Software Clustering

This section describes experiments to determine the latency

related to available link capacity and use of software to clus-

ter the track observations. The first set of experiments inves-

tigated the amount of latency experienced by a single node

receiving track data. This experiment inserted a time stamp

on packets leaving the sender. The receiver then compares

the packet time stamp against its current time. The network

time protocol (NTP) was used to synchronize clocks on all

machines in the experiment.

Each node sent sensor track data to all other nodes in the net-

work using IP Multicast. A track generator application pro-

vided by Boeing created the tracks with the flexibility to gen-

erate diverse patterns or shapes. The software creates targets

of interest and records their position as they change over time

based on the pattern selected. Modifications were made to

the track data generation software to provide simple X, Y co-

ordinates and X,Y velocities. The track data also contained

an identifier field describing the type of track data and packet

length.

Figure 7 contains the graph demonstrating an increased la-

tency experienced at the gateway (GW) node for track data.

The gateway node has the ability to process the data at the

network level between when it is received at the input port

and routed to the output port. As the networks grows from

10 to 68 nodes, the amount of track data increases as well as

the latency for a single track to be processed. The maximum

latency varied from 109 to 260ms as the number of nodes in-

creased. The average latency ranged only from 103 to 109ms.
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Figure 6. Bandwidth Costs for Distributing Track Data with

Different Protocols

In the next experiment, clustering algorithms are proposed for

both software and hardware.The nodes topologies consisted

of 25, 50 and 75 nodes, each sending track data to all nodes

in the network, including a GW clustering node. The GW
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clustering node uses a K-means clustering algorithm on each

packet in order to identify similar track data. Each packet that

arrives at the GW node is clustered and compared to packets

previously clustered. If a packet is similar to a one previously

clustered and recently forwarded to the neighboring network,

it is considered redundant and discarded.

Figure 8. - 10 node Emulab Experiment with a Gateway

Cluster Node and Neighbor Link
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In Figure 8, the GW node connects to a neighboring network

or node. Our experiments next deployed a single node con-

nected to the other end of the GW with a 1Mbit/sec link had a

latency of 100ms. Figure 9 illustrates the number of packets

that the gateway node receives and clusters packets that are

forwarded. The amount of packets it forwards varies from
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1130 to 9400 packets. This is a considerable reduction in the

network load because the amount of packets it receives and

clusters ranges from 187,000 to 435,000 packets. Figure 10

displays the amount of bandwidth used in terms of megabytes

processed in and out of the gateway node. Again, significant

reductions in bandwidth are demonstrated using clustering al-

gorithms. The incoming amount of data varies from 40 to

90Mbytes with the clustering gateway node reducing the traf-

fic to 1.9 to 2.1 Mbytes. This provides an 18 to 48x reduction

in bandwidth before traversing to the low capacity neighbor-

ing link.

The last experiment performed investigates the amount of

packet loss experienced by the software clustering implemen-

tation. The clustering program was developed in JAVA and

executed on a 3 GHz Pentium 4 CPU using a Linux operat-

ing system. The experiments utilized 100Mbit links with no

additional link delay to provide the best case performance.

Packet loss is due to the slow sequential processing required

for the clustering algorithm. Processing compares the clus-

tered hash value of each incoming packet against the know

hash values of the packets in memory. As bursts of packets

arrived, the CPU was unable to investigate all of the packets

before buffers overflowed. Since the track data is assuming

the use of an unreliable communication protocol, no retrans-

mission is issued for track data and it is lost. The hardware
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implementation of this clustering algorithm will not suffer the

same speed limitations of software. Hardware maps the clus-

tering algorithm onto an FPGA, that allows for significant

parallelism. The results of the packet loss at the gateway node

are presented in Figure 11. The number of packets that are

unable to be clustered varies from 27,000 to 209,000 packets.

Figure 9 illustrates the amount of traffic in and out of the gate-

way node. The average packet size received at the gateway is

217 bytes. Each node generates 9,090 packets. In the 75

node example, 9090 x 75 = 681,750 packets are destined for

the GW node. The GW was only able to receive 434,995

packets, and the others were dropped due to an overloaded

CPU. The total traffic received at the GW was 217 * 434,995

= 94,393,915 bytes or approximately 94 Mbytes.

Figure 6 depicts the amount of traffic generated in the net-

work as the number of nodes increased from 10 to 75. From

this figure, the JXTA P2P Multicast protocol is the most ex-

pensive implementation to distribute traffic to all nodes. Us-

ing either IP Multicast or Ethernet Broadcast is significantly

less expensive. From these results, the IP Multicast proto-

col was selected as the protocol to deploy in the software and

hardware clustering applications. These simulations helped

to demonstrate the problems of deploying the JXTA P2P at

the Gateway Cluster Node. This protocol would create ad-

ditional CPU and network load to further degrade the per-

formance of the clustering. From Figure 6, the overhead

associated with sending the same information using JXTA

Multicast required 17 times the total bandwidth. This over-

head comes from the additional complexity of pushing mul-

ticast (state information encapsulated with each message) us-

ing overlays to the application layer. Thus it is possible to

predict 138,087,788 * 17 = 2,347,492,396 bytes or approxi-

mately 2.3 Gigabytes of traffic destined for the gateway node

if P2P multicast is chosen as the distribution method. The

GW node would be able to process significantly less if con-

ventional hardware is used. Testing confirms that even a 3

Ghz CPU could not keep up with receiving and clustering of

the smaller multicast packets which necessitates the use of

FPGA or ASIC technology.

7. HARDWARE ARCHITECTURE

Advanced SA requires the use of high speed networks with

increased bandwidth to implement centralized track fusion to

improve tracking performance. Distributed track fusion can

process the data locally and only exchange key observations

to improve SA. It is critical to select the correct distance and

clustering methods to ensure the right data arrives at the right

time to the distributed nodes.

Manhattan distance is used to calculate the distance to the

projected target position or centroid. This ”coarse gating”

technique is responsible for the majority of the data reduction.

Track prediction is critical to setting the clustering thresh-

old. Selecting the tracks to be clustered is a form of track-to-

track gating. The time increment threshold selects the critical

Figure 12. The NetFPGA platform used to implement Track

Clustering

points at which the distance clustering is accomplished.

As each track observation arrives, the algorithms first extrap-

olates each stored source track forward using the velocity and

time increment. Second, the distance to each projected cen-

troid is compared to correctly associate the data with the cor-

rect track or cluster. If the distance calculated is less than the

clustering threshold, the new observation will be selected as

critical data for fusion. The update rate is also checked to

ensure the most critical data is prioritized then sent.

Highly parallel state machine hardware implemented the al-

gorithms above using the NetFPGA platform. The NetFPGA

is an open source project that allows researchers to develop

network applications and systems [11]. Developed projects

include Secure Switches (Ethane) [12], Routers, and Rate

Control Protocol (RCP) [13].

For the development of network solutions, the NetFPGA con-

tains a Xilinx Virtex-II Pro FPGA. The board also contains a

Double Data Rate (DDR2) SDRAM device, two SRAM de-

vices, two serial ATA (SATA) connectors, and a quad-port

physical-layer transceiver. The NetFPGA library provides a

Verilog template for design that interfaces to the memory de-

vices and the network interfaces [11].

8. HARDWARE DESIGN

The track clustering algorithm performs four primary opera-

tions (1) calculating the distances between observations and

centroids, (2) identifying if the incoming observation maps

to an existing centroid, (3) updating the centroid or creat-

ing a new cluster, and (4) determining if the track should be

dropped or sent based on the timetable. The hardware im-

plementation is comprised of three primary modules: Track

Cluster, Time Compare, and Update. In addition to these

modules, control modules were needed to load and run the

hardware clustering system. Figure 13 shows the architecture

of the track clustering system.

Time Stamp

As the track data enters the system it is provided with a time

stamp. The time compare module uses the 32-bit time stamp

to determine if the track should dropped or sent based on the
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defined update rates set by the time threshold.

Track Cluster

A set of smaller modules comprise the track cluster function.

The first module calculates the distance and is designed in a

modular fashion so that it can be replaced with diverse met-

rics implemented in hardware. The Manhattan distance cal-

culation is replicated in parallel to evaluate multiple distances

simultaneously.

The second component is the cluster table. The cluster table

maintains a list of current clusters/tracks locally on the FPGA

chip. The centroids of the clusters represent the projected po-

sition of the track for prioritization. This projected position

determines if an incoming track matches a cluster. The cal-

culated parallel distances are passed to the accept module to

make the critical decision to forward the data.

Accept

The accept module compares all parallel distances to a cluster

threshold. If the distance is less than the cluster threshold, the

module will assign the incoming track to the specified cluster.

The module will not assign the incoming track if the distances

are greater than the cluster threshold. If this occurs, the sys-

tem currently decides the incoming track is a new cluster and

will specify that a new entry needs to be added to the cluster

table.

Update

After the accept module determines if an assignment is ac-

cepted, the update module then updates the cluster table. The

update is computed from the velocity information contained

in the track data and determines the projected position of the

track. The projected position is passed to the cluster table

(in the track cluster module) for storage. The accept module

determines whether the track is a new track and needs to be

added to the set of known clusters. The update module will

calculate the projection of the track and then send the infor-

mation to the cluster table to be stored.

Time Compare

The time compare module determines if the track should be

dropped or forwarded to downstream modules/systems. The

module is comprised of a timetable that maintains two time

values: the last time the cluster/track was reported and the

last time a track message was received. A time threshold

determines if a track message should be sent or aggregated.

If the difference between the last sent time and the current

time is greater than the threshold, the data is sent from the

node. However, if the difference is less than the time thresh-

old the data updates the cluster table however the data is not

sent from the node.

The timetable also contains information regarding the veloc-

ity and the accuracy of the incoming track data. This data is

used in conjunction with the time data to determine whether

the system sends or drops the data. The velocity information

is used to determine the three time categories or priorities of

traffic: high, medium and low.

9. CLUSTERING OBSERVATION DATA

The track data is part of the network traffic flowing to and

from each clustering node. Each track observation has a cur-

rent position and velocity in the xy dimension. The clustering

system can be expanded into a larger dimensional space, al-

though the dimensionality is set to two currently.

The clustering nodes are interconnected using a network

where multiple sensors on different platforms report the same

track information but may have different accuracies. These

tracks are similar representations of the same information,

but are received at multiple clustering nodes at different times

due to network traversal. The clustering nodes maintain in-

formation on the current clusters (active tracks) and cluster

centroids. In addition to the position of the track, the sys-

tem uses time stamps to determine the last time a cluster was

reported.

The clustering system uses a modified algorithm similar to

K-means. In traditional K-means, the number of clusters (K)

is set to a specified number. We allow the number of clusters

to start from zero and expand as new tracks are found.

The algorithm utilizes two tables to achieve the desired func-

tionality. The first table, the cluster table, is comprised of the

current clusters that are projections of where the track should

be in the next track message. As tracks are received, they are

compared to the clusters using the Manhattan distance. If the

distance is less than a threshold (cluster threshold), the track

message is assigned to the specified cluster. The velocity of

the track message updates the projection of the cluster. This

projection update allows the system to account for tracks that

are not static. If the distance from the input track is greater

than the threshold for all the current clusters, a new cluster is

added.

The second table, the track time table, maintains two times

for each cluster: the last time a message was sent about that

cluster and the last time a message was received about that

cluster. Since the track data is time stamped when the clus-
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tering system receives the track, the system compares the time

received to the time sent. If this time is greater than the tim-

ing threshold the system will allow the message to pass and

update the cluster received time in the table. However, if the

time is less than the time threshold, the system updates the

cluster received time and removes the message from the out-

going traffic.

10. HARDWARE FABRICATION

The implementation on the NetFPGA platform was able

achieve a clock frequency of 125 MHz. The hardware uti-

lization of a track clustering algorithm with four parallel dis-

tance metrics is shown in Table 1. With a slice utilization of

44% the number of distance metrics can be increased. This

increase in parallel distance calculation reduces the latency to

compare incoming tracks to all known clusters.

XC2VP50 Utilization

Resources Utilization Percentage

Slices 10533 out of 23616 44%

4-input LUTS 14318 out of 47232 30%

Flip Flops 12958 out of 47232 27%

Block RAMs 82 out of 232 35%

External IOBs 353 out of 692 51%

Table 1. Device utilization for XC2VP50 Hardware Track

Clustering with four concepts

Given our implementation with four parallel distance metrics

with 100 total tracks in the cluster table at any one time, we

can estimate the total time for clustering an incoming track.

The parallel distances can be calculated in four cycles. The

total number of cycles required to produce all 100 distances

would be 100. Since the operation of the clustering circuits

are pipelined, the accept module would only require three cy-

cles for determining the correct action to perform. The update

module would require three cycles to perform an update or

creation of a new cluster. The time table compare takes three

cycles. Add in an additional four cycles for header process-

ing and we have a total of 113 cycles. Since we are running

the hardware at 125 Mhz, the total time required for distance

calculations, assignment determination, and updates requires

0.904 µs for each incoming track. This gives us an approxi-

mate throughput of 1.1 million packets per second.

11. CONCLUSIONS

The results show that the real time hardware using the K-

mean algorithm for clustering can accurately locate redun-

dant track data for aggregation, identify new tracks, and select

the critical tracks to be forwarded to other distributed sensor

nodes for fusing. Improvements in the information quality

and latency for distributed track fusion were demonstrated us-

ing advanced clustering.

Track data distributed using multicast is shown to generate

2.3 Gigabytes of traffic for large scale (75 nodes) fusion.

Experiments revealed state-of-the-art CPUs could not han-

dle bursts of packets received which resulted in loss of pack-

ets due to network buffer overflow. The clustering gateway

node was shown to provide an 18 to 48x reduction in band-

width through eliminating redundant data. The results were

tested in a distributed environment called Emulab that used

a software version of the clustering algorithms. State-of-the-

art Emulab CPUs could not keep up with the track data re-

sulting in network buffer overflow and loss of packets. This

illustrates the need for our special processing solution using

FPGA technology.

Real time clustering is implemented in the network layer (OSI

layer 3) to reduce the bandwidth intelligently while maintain-

ing high information content. Our pipelined hardware design

calculates four parallel distance metrics for 100 total tracks

in 100 cycles. The total time required for distance calcula-

tions, assignment determination, and updates is only 0.904

µs for each incoming track. The hardware solution is proto-

typed using the Stanford NetFPGA in the Boeing Center for

Intelligent Networked Systems (CINS) lab.

Our real time solution preserves Layer 7 resources and de-

creases latencies. The ability to add real time hardware in the

network layer improves MTT performance in bandwidth lim-

ited environments ultimately preserving legacy avionic net-

work resources.

12. FUTURE WORK

Novel methods to illustrate the increased value of informa-

tion using clustering over normal queuing methods was con-

structed based on spatial methods. Our use of clustering al-

gorithms was fairly limited with K-means however there are

plans to implement solutions based on N-means algorithms

in the future. We realize selection of the correct clustering

thresholds must be dynamic based on the separation of targets

and is highly dependent on accurately projecting the centroid.

The relationship between our temporal and spacial clustering

algorithms must be integrated into a single solution. We plan

to develop dynamic clustering thresholds for more accurate

prediction of target paths while selectively reducing the dis-

tribution bandwidth. Real time assessment of the informa-

tion value allows us to dynamically adjust the thresholds for

preserving the key observations. We theorize that changing

the update rates proportionally with the target velocity will

provide improved information value. We also plan to add a

weighting factor to take into account proximity, sensor accu-

racy and threat level will provide a more intelligent solution.

Interconnecting the time increment used in the projection of

the clustering centroid with the temporal target rate will sim-

plify the algorithms and hardware.

Reliable transfer of data using wireless is available in sev-

eral avionic systems and will be evaluated as a separate test

case. Latency will definitely increase if all dropped packets

are transferred as required by reliable transport.
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Information content is improved by identifying key target

characteristics such as turning ratio, threat level and multi-

target separation. Increasing information content while de-

creasing bandwidth is the goal of the Boeing Intelligent Gate-

way (BIG) being developed. BIG is an intelligent gateway

that uses a highly parallel state machine to implement a set of

distributed services such as intelligent data association for im-

proving the quality of information with reduced bandwidth.
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